Yiyuan commited on
Commit
ae4f695
·
verified ·
1 Parent(s): 2803063

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +268 -3
README.md CHANGED
@@ -1,3 +1,268 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <p align="center" width="100%">
2
+ <img src="assets/banner.png" width="100%" height="80%">
3
+ </p>
4
+
5
+ [![arXiv](https://img.shields.io/badge/arxiv-2406.xxxxx-b31b1b?style=plastic&color=b31b1b&link=https%3A%2F%2Farxiv.org%2Fabs%2F2406.xxxxx)](https://arxiv.org/abs/2406.xxxxx)
6
+ [![website](https://img.shields.io/badge/Project-Website-purple)](https://kxgong.github.io/meta_transformer/)
7
+ [![Hugging Face Models](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Models-blue)](https://huggingface.co/papers/2307.10802)
8
+ <a href="https://twitter.com/_akhaliq/status/1682248055637041152"><img src="https://img.shields.io/twitter/url/https/twitter.com/cloudposse.svg?style=social"></a>
9
+ <a href="https://www.youtube.com/watch?v=V8L8xbsTyls&ab_channel=CSBoard"><img src="https://img.icons8.com/color/48/000000/youtube-play.png" width="28" height="23"></a>
10
+ <a href="#LICENSE--citation">
11
+ <img alt="License: Apache2.0" src="https://img.shields.io/badge/LICENSE-Apache%202.0-blue.svg"/>
12
+ </a>
13
+
14
+ ### Quick Use
15
+
16
+ ```python
17
+ import os
18
+ import torch
19
+ import json
20
+ import argparse
21
+ from tqdm import tqdm
22
+ from collections import defaultdict
23
+ import torch.nn.functional as F
24
+ from time import time
25
+ from easydict import EasyDict as edict
26
+
27
+ from model.mico import *
28
+
29
+
30
+ def load_from_pretrained_dir(pretrain_dir, video_resolution=224, return_modal="full"):
31
+
32
+ checkpoint_dir = os.path.join(pretrain_dir,'ckpt')
33
+ file_cfg = edict(json.load(open(os.path.join(pretrain_dir,'log','hps.json'))))
34
+ model_cfg = file_cfg.model_cfg
35
+ checkpoint_ls = [ i for i in os.listdir(checkpoint_dir) if i.startswith('model_step')]
36
+ checkpoint_ls = [int(i.split('_')[2].split('.')[0]) for i in checkpoint_ls]
37
+ checkpoint_ls.sort()
38
+ step = checkpoint_ls[-1]
39
+
40
+ checkpoint_name = 'model_step_'+str(step)+'.pt'
41
+ ckpt_file = os.path.join(checkpoint_dir, checkpoint_name)
42
+ checkpoint = torch.load(ckpt_file, map_location = 'cpu')
43
+ print(f'load_from_pretrained: {ckpt_file}')
44
+
45
+ new_ckpt = {}
46
+ for k,v in checkpoint.items():
47
+ if 'video' in k:
48
+ new_ckpt[k.replace('video','vision')]=v
49
+ elif 'evaclip_model' in k:
50
+ new_ckpt[k.replace('evaclip_model','vision_encoder')]=v
51
+ elif 'clip_model' in k:
52
+ new_ckpt[k.replace('clip_model','vision_encoder')]=v
53
+ else:
54
+ new_ckpt[k] = v.float()
55
+
56
+ checkpoint = new_ckpt
57
+
58
+ if model_cfg.frame_embedding_type == 'adaptive':
59
+
60
+ if 'vision_frame_embedding' in checkpoint:
61
+ pretrain_embed = checkpoint['vision_frame_embedding']
62
+ if pretrain_embed.shape[1]!=model_cfg.max_vision_sample_num:
63
+ pretrain_embed = F.interpolate(pretrain_embed.permute(0,2,1),model_cfg.max_vision_sample_num,mode='nearest').permute(0,2,1)
64
+ checkpoint['vision_frame_embedding'] = pretrain_embed
65
+ else:
66
+ pretrain_embed = checkpoint['vision_perceiver.vision_frame_embedding']
67
+ if pretrain_embed.shape[1]!=model_cfg.max_vision_sample_num:
68
+ pretrain_embed = F.interpolate(pretrain_embed.permute(0,2,1),model_cfg.max_vision_sample_num,mode='nearest').permute(0,2,1)
69
+ checkpoint['vision_perceiver.vision_frame_embedding'] = pretrain_embed
70
+
71
+ if 'audio_frame_embedding' in checkpoint:
72
+ pretrain_embed_a = checkpoint['audio_frame_embedding']
73
+ if pretrain_embed_a.shape[1]!=model_cfg.max_audio_sample_num:
74
+ pretrain_embed_a = F.interpolate(pretrain_embed_a.permute(0,2,1),model_cfg.max_audio_sample_num,mode='nearest').permute(0,2,1)
75
+ checkpoint['audio_frame_embedding'] = pretrain_embed_a
76
+
77
+ if model_cfg.vision_encoder_type.startswith('clip'):
78
+ vision_width = checkpoint["vision_encoder.visual.positional_embedding"].shape[1]
79
+ vision_layers = len([k for k in checkpoint.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
80
+ vision_patch_size = checkpoint["vision_encoder.visual.conv1.weight"].shape[-1]
81
+
82
+ grid_size = round((checkpoint["vision_encoder.visual.positional_embedding"].shape[0] - 1) ** 0.5)
83
+
84
+ src = checkpoint["vision_encoder.visual.positional_embedding"]
85
+ src_cls = src[0:1]
86
+ src_oth = src[1:]
87
+ new_grid_size = model_cfg.vision_resolution // vision_patch_size
88
+ if new_grid_size!=grid_size:
89
+ src_oth = F.interpolate(src_oth.reshape(grid_size,grid_size,vision_width).permute(2,0,1).unsqueeze(0),(new_grid_size,new_grid_size),mode='bilinear')
90
+ src_oth = src_oth[0].permute(1,2,0).reshape(-1,src.shape[-1])
91
+ tgt = torch.cat((src_cls,src_oth),dim=0)
92
+ checkpoint["vision_encoder.visual.positional_embedding"] = tgt
93
+
94
+ elif model_cfg.vision_encoder_type.startswith('evaclip'):
95
+
96
+ vision_width = checkpoint["vision_encoder.visual.pos_embed"].shape[2]
97
+ vision_layers = len([k for k in checkpoint.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
98
+
99
+ vision_patch_size = checkpoint["vision_encoder.visual.patch_embed.proj.weight"].shape[-1]
100
+
101
+ grid_size = round((checkpoint["vision_encoder.visual.pos_embed"].shape[1] - 1) ** 0.5)
102
+
103
+ src = checkpoint["vision_encoder.visual.pos_embed"][0]
104
+ src_cls = src[0:1]
105
+ src_oth = src[1:]
106
+ new_grid_size = model_cfg.vision_resolution // vision_patch_size
107
+ if new_grid_size!=grid_size:
108
+ src_oth = F.interpolate(src_oth.reshape(grid_size,grid_size,vision_width).permute(2,0,1).unsqueeze(0),(new_grid_size,new_grid_size),mode='bilinear')
109
+ src_oth = src_oth[0].permute(1,2,0).reshape(-1,src.shape[-1])
110
+ tgt = torch.cat((src_cls,src_oth),dim=0)
111
+ checkpoint["vision_encoder.visual.pos_embed"] = tgt.unsqueeze(0)
112
+ else:
113
+ pass
114
+
115
+ if return_modal=="full":
116
+ new_ckpt = checkpoint
117
+ elif return_modal=="uni":
118
+ new_ckpt = defaultdict()
119
+ for k in checkpoint.keys():
120
+ if "video_encoder" in k:
121
+ new_k = ".".join(k.split(".")[1:])
122
+ new_ckpt[new_k] = checkpoint[k]
123
+ elif return_modal=="text":
124
+ new_ckpt = defaultdict()
125
+ for k in checkpoint.keys():
126
+ if "multimodal_encoder" in k:
127
+ new_k = ".".join(k.split(".")[1:])
128
+ new_ckpt[new_k] = checkpoint[k]
129
+ else:
130
+ pass
131
+
132
+ return new_ckpt, model_cfg
133
+
134
+
135
+ if __name__ == "__main__":
136
+ # import ipdb
137
+ # ipdb.set_trace()
138
+ device = "cuda"
139
+ from model.imageprocessor import ImageProcessor
140
+ pretrain_path = 'MiCo-g' # please check your
141
+ checkpoint, opts = load_from_pretrained_dir("MiCo-g", video_resolution=224, return_modal="full")
142
+ model = MiCo.from_pretrained(opts,checkpoint).to(device)
143
+ image_file = "example/test.jpeg"
144
+ proc = ImageProcessor(image_resolution=224, image_encoder_type="swin", training=True)
145
+ image_input = proc(image_file).to(device)
146
+ image_input = image_input.unsqueeze(1) # image as a 1 frame video
147
+
148
+ video_output = model.forward_vision_encoder(image_input)
149
+ video_output_pooled = model.pool_vision_for_contra(video_output)
150
+ feat_v = model.contra_head_v(video_output_pooled)
151
+ feat_v = F.normalize(feat_v,dim=-1)
152
+
153
+ texts = ["a man is skiing in a snowy day.", "it's a hot day"]
154
+ caption_tokens = model.multimodal_encoder.tokenizer(texts,
155
+ padding="max_length",
156
+ truncation=True,
157
+ max_length=30,
158
+ return_tensors="pt")
159
+ caption_tokens = caption_tokens.to(torch.device('cuda'))
160
+ input_ids = caption_tokens.input_ids
161
+ attention_mask = caption_tokens.attention_mask
162
+ caption_output = model.forward_multimodal_encoder(input_ids, attention_mask).sequence_output
163
+ caption_output_pooled = model.pool_text_for_contra(caption_output)
164
+ feat_t = model.contra_head_t(caption_output_pooled)
165
+ feat_t = F.normalize(feat_t,dim=-1)
166
+
167
+
168
+ sim_t2v = torch.matmul(feat_t, feat_v.permute(1,0))
169
+ print(sim_t2v)
170
+
171
+ video_input = model.get_multimodal_forward_input_vision(video_output)
172
+ slice_output = model.forward_multimodal_encoder(input_ids, attention_mask, video_input).sequence_output
173
+ slice_scores = F.softmax(model.itm_head(slice_output[:,0]),dim=1)[:,1]
174
+ print(slice_scores)
175
+
176
+
177
+ video_input = model.get_multimodal_forward_input_vision(video_output)
178
+ init_input_ids = torch.ones(video_input.size(0), 1).long().cuda().fill_(model.multimodal_encoder.tokenizer.bos_token_id)
179
+ init_attention_mask = init_input_ids.new_ones(video_input.size(0), 1, 1)
180
+ outputs = model.multimodal_encoder.generate(input_ids=init_input_ids,
181
+ attention_mask=init_attention_mask,
182
+ encoder_hidden_states=video_input,
183
+ max_new_tokens=model.max_caption_len,
184
+ num_beams=model.beam_size,
185
+ eos_token_id=model.multimodal_encoder.tokenizer.sep_token_id,
186
+ pad_token_id=model.multimodal_encoder.tokenizer.pad_token_id,
187
+ length_penalty=0.6)
188
+ outputs_newgen = outputs[:,1:]
189
+ captions = model.multimodal_encoder.tokenizer.batch_decode(outputs_newgen, skip_special_tokens=True)
190
+ print(captions)
191
+ ```
192
+
193
+ ### ✨ Inspiration of Multimodal Context: Multimedia Brain Cognition
194
+
195
+ <p align="center" width="100%">
196
+ <img src="assets/brain.png" width="100%" height="60%">
197
+ </p>
198
+
199
+ ***How the human brain performs coherent multimodal cognition?***
200
+
201
+ As outlined in Richard Mayer's Cognitive Theory of Multimedia Learning,our brain processes multimedia signals through two distinct channels—auditory and visual—in sensory memory, as depicted in Figure(a). The sensory memory integrates these signals with prior knowledge through words, transforming new multimedia information into long-term memory. Notably, **1**) multimedia signals in the brain share channels, and **2**) words function as the reasoning interface in our brain.
202
+
203
+ Inspired by these insights, we categorize diverse modalities into two types: ``knowledge modality`` and ``interface modality``. *Knowledge modalities*, primarily derived from raw sensors, contribute knowledge in diverse formats. For example, images and depth maps offer visual knowledge, while audio and video provide auditory and spatiotemporal knowledge. The language modality, developed by humans, is inherently more abstract and naturally functions as the *interface modality*, facilitating learning, reasoning, and the coordination of knowledge. To this end, we design an omni-modal learning architecture, illustrated in Figure (b), with two distinct branches: one for knowledge modalities and one for the interface modality, *i.e.* natural language. The knowledge and interface modalities are aligned through a novel generative reasoning method.
204
+
205
+ ### 🚀 MiCo, An omni-modal and scalable pretraining paradigm
206
+
207
+ <p align="center" width="100%">
208
+ <img src="assets/omnimodal_pretraining.png" width="100%" height="60%">
209
+ </p>
210
+
211
+ We propose collecting large-scale omni-modal paired data, including text,
212
+ image, video, depth, and normal maps, to learn universal representations.
213
+
214
+ <p align="center" width="100%">
215
+ <img src="assets/paradigm.png" width="100%" height="60%">
216
+ </p>
217
+
218
+ **🚀 Evolution of Pretraining Paradigms**. Masked modeling (a) has shown great success in single modality, general-purpose understanding. Contrastive learning (b) distinguishes transferable features with modality tuples (such as text-image, text-video, text-audio, etc).
219
+
220
+ *🚀🚀🚀 We aim to achieve general-purpose omni-modal understanding and learn transferable, universal representations in (c).*
221
+
222
+ ### 🌟🌟🌟 The Multimodal Scaling Laws with MiCo: Modalities Help Modalies!
223
+
224
+ <p align="center" width="100%">
225
+ <img src="assets/scaling_laws.png" width="100%" height="60%">
226
+ </p>
227
+
228
+ ### 🔓 Pretrained Omni-Modal Models
229
+ <!-- <details> -->
230
+ **We will continue to update this model zoo including all scales of ViTs and highly-efficient ConvNets with the MiCo pretraining paradigm**
231
+
232
+ <summary> Current Checkpoints </summary>
233
+ <br>
234
+ <div>
235
+
236
+ | Model | Pretraining | Scale | Modality | #Param | Google Drive | Hugging Face
237
+ | :------------: | :----------: | :----------------------: | :----: | :---------------------------------------------------------------------------------------------------: |:----: | :----: |
238
+ | MiCo | 300k steps | ViT-g | Omni-modal | 1.3B | [ckpt](https://drive.google.com/drive/folders/1AIQjV1KU8K4OXiO-4gFirxkoxt3twWIq?usp=sharing) | [ckpt](https://huggingface.co/Yiyuan/MiCo-ViT-g-14-omnimodal-300k-b64K)
239
+
240
+
241
+ </div>
242
+
243
+ ### 🔓 Omni-Modal Dataset Collection
244
+
245
+ We provdie a detailed [doc](data/README.md) for preparing the omni-modal dataset step-by-step
246
+
247
+ ### ⚡ Quick Start
248
+
249
+ 1. Download MiCo weights
250
+ ```bash
251
+ pip install gdown
252
+ gdown 1AIQjV1KU8K4OXiO-4gFirxkoxt3twWIq --folder
253
+ python inference_demo.py
254
+ ```
255
+ # Citation
256
+ If the code and paper help your research, please kindly cite:
257
+ ```
258
+ @article{zhang2024explore,
259
+ title={Explore the Limits of Omni-modal Pretraining at Scale},
260
+ author={Zhang, Yiyuan and Li, Handong and Liu, Jing and Yue, Xiangyu},
261
+ journal={arXiv preprint arXiv:2406.xxxxx},
262
+ year={2024}
263
+ }
264
+ ```
265
+ # License
266
+ This project is released under the [Apache 2.0 license](LICENSE).
267
+ # Acknowledgement
268
+ We appreciate [Dr. Xiaohan Ding](https://dingxiaohan.xyz/) for the valuable discussion and suggestions.This code is developed based [Meta-Transformer](https://github.com/invictus717/MetaTransformer), [VAST](https://github.com/TXH-mercury/VAST), [DPT](https://github.com/EPFL-VILAB/omnidata), and [GeoWizard](https://github.com/fuxiao0719/GeoWizard).