File size: 39,981 Bytes
8eeaa19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd8a4dd
8eeaa19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd8a4dd
 
8eeaa19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd8a4dd
8eeaa19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd8a4dd
8eeaa19
fd8a4dd
 
 
 
8eeaa19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd8a4dd
8eeaa19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd8a4dd
8eeaa19
 
 
fd8a4dd
 
 
 
8eeaa19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd8a4dd
8eeaa19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd8a4dd
8eeaa19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd8a4dd
 
8eeaa19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd8a4dd
 
8eeaa19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd8a4dd
 
8eeaa19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd8a4dd
 
8eeaa19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd8a4dd
 
8eeaa19
 
 
 
 
 
 
 
 
 
fd8a4dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
#
# This code is based on transformers/src/transformers/models/llama/modeling_llama.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""PyTorch InternLMXComposer2 model."""

import copy
import os
import random
import re
from pathlib import Path
from typing import List, Optional, Tuple, Union

import numpy as np
import torch
import torch.utils.checkpoint
from PIL import Image
from torch import nn
from torch.nn import CrossEntropyLoss
from torchvision import transforms
from transformers import (
    StoppingCriteria,
    StoppingCriteriaList,
    set_seed,
)
from transformers import PreTrainedTokenizer
from transformers.generation.streamers import BaseStreamer
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.utils import (
    add_start_docstrings_to_model_forward,
    replace_return_docstrings,
)

from .build_mlp import build_vision_projector, build_vision_tower
from .ixc_utils import Image_transform, Video_transform, frame2img, get_font, load_video
from .modeling_internlm2 import (
    InternLM2_INPUTS_DOCSTRING,
    InternLM2Config,
    InternLM2Model,
    InternLM2PreTrainedModel,
)

_CONFIG_FOR_DOC = "InternLMXcomposer2Config"
FROM_TOKEN_1 = "[UNUSED_TOKEN_146]"
FROM_TOKEN_2 = "[UNUSED_TOKEN_145]"

image_extensions = {".jpg", ".jpeg", ".png", ".gif", ".bmp", ".webp"}
video_extensions = {".mp4", ".avi", ".mkv", ".mov", ".wmv"}


class StoppingCriteriaSub(StoppingCriteria):
    def __init__(self, stops=[], encounters=1):
        super().__init__()
        self.stops = stops

    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
        for stop in self.stops:
            if torch.all((stop == input_ids[0][-len(stop) :])).item():
                return True
        return False


def get_stopping_criteria(stop_words_ids):
    stop_words_ids = [torch.tensor([i]).cuda() for i in stop_words_ids]
    stopping_criteria = StoppingCriteriaList(
        [StoppingCriteriaSub(stops=stop_words_ids)]
    )
    return stopping_criteria


def set_random_seed(seed, set_cudnn=False):
    """Set the random seed for reproducibility.

    Parameters:
    seed (int): The seed to use for generating random numbers.
    """
    torch.manual_seed(seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed_all(seed)  # For multi-GPU.
    np.random.seed(seed)
    random.seed(seed)
    if set_cudnn and torch.backends.cudnn.is_available():
        torch.backends.cudnn.deterministic = True
        torch.backends.cudnn.benchmark = False


class InternLMXComposer2ForCausalLM(InternLM2PreTrainedModel):
    _auto_class = "AutoModelForCausalLM"

    _tied_weights_keys = ["output.weight"]

    def __init__(self, config: InternLM2Config):
        super().__init__(config)
        self.model = InternLM2Model(config)
        self.vocab_size = config.vocab_size
        self.output = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
        self.tokenizer: PreTrainedTokenizer = None  # type: ignore
        self.hd_num = 25
        self.font = get_font()

        self.max_length = config.max_length
        print(f"Set max length to {self.max_length}")
        # Initialize weights and apply final processing
        self.post_init()
        self.plora_glb_GN = nn.Parameter(torch.zeros([1, 1, 4096]))
        self.plora_sub_GN = nn.Parameter(torch.zeros([1, 1, 1, 4096]))

        self.vit = build_vision_tower()
        self.vision_proj = build_vision_projector()

        self.vis_processor = transforms.Compose(
            [
                transforms.ToTensor(),
                transforms.Normalize(
                    (0.48145466, 0.4578275, 0.40821073),
                    (0.26862954, 0.26130258, 0.27577711),
                ),
            ]
        )

    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, InternLM2Model):
            module.gradient_checkpointing = value
        if value:
            self.vit.vision_tower.vision_model.encoder.gradient_checkpointing = value

    def get_input_embeddings(self):
        return self.model.tok_embeddings

    def set_input_embeddings(self, value):
        self.model.tok_embeddings = value

    def get_output_embeddings(self):
        return self.output

    def set_output_embeddings(self, new_embeddings):
        self.output = new_embeddings

    def set_decoder(self, decoder):
        self.model = decoder

    def get_decoder(self):
        return self.model

    def encode_text(self, text, add_special_tokens=False):
        token = self.tokenizer(
            text, return_tensors="pt", add_special_tokens=add_special_tokens
        ).input_ids.to(self.device)  # type: ignore
        embs = self.model.tok_embeddings(token)
        return embs

    def encode_img(
        self, image: torch.Tensor | str | Path, hd_num: int = 25
    ) -> torch.Tensor:
        if image is None:
            return None  # UNREACHABLE # type: ignore
        if isinstance(image, str):
            _, ext = os.path.splitext(image)
            if ext.lower() in image_extensions:
                image_pil = Image.open(image)
                image_pt = Image_transform(image_pil, hd_num=hd_num)
            elif ext.lower() in video_extensions:
                image_pil_list = load_video(image)
                image_pil_list = frame2img(image_pil_list, self.font)
                image_pt = Video_transform(image_pil_list, hd_num=hd_num)
            else:
                print("Unknow input format", image)
                return None  # UNREACHABLE # type: ignore
            image = self.vis_processor(image_pt).unsqueeze(0).to(self.device)
        else:
            assert isinstance(image, torch.Tensor)

        img_embeds, atts_img, img_target = self.img2emb(image)
        return img_embeds

    def img2emb(self, image):
        img_embeds, img_split = self.vit([image], self.plora_glb_GN, self.plora_sub_GN)
        if len(img_split) > 1:
            print("Batch Size >1 is not supported.")
            assert 0
        # print (img_embeds.shape)
        img_embeds = self.vision_proj(img_embeds)
        atts_img = torch.ones(img_embeds.size()[:-1], dtype=torch.long).to(
            img_embeds.device
        )

        img_target = (
            torch.ones(img_embeds.size()[:2], dtype=torch.long).to(img_embeds.device)
            * -100
        )

        return img_embeds, atts_img, img_target

    def prompt_wrap(self, img_embeds, prompt):
        batch_size = img_embeds.shape[0]
        p_before, p_after = prompt.split("<ImageHere>")
        p_before_tokens = self.tokenizer(
            p_before, return_tensors="pt", add_special_tokens=True
        ).to(img_embeds.device)  # type: ignore

        p_before_embeds = self.model.tok_embeddings(p_before_tokens.input_ids).expand(
            batch_size, -1, -1
        )
        wrapped_img_embeds = torch.cat([p_before_embeds, img_embeds], dim=1)

        wrapped_atts_img = torch.ones(
            wrapped_img_embeds.size()[:-1], dtype=torch.long
        ).to(img_embeds.device)

        wrapped_target = (
            torch.ones(batch_size, wrapped_img_embeds.shape[1], dtype=torch.long).to(
                img_embeds.device
            )
            * -100
        )

        return wrapped_img_embeds, wrapped_atts_img, wrapped_target

    def text2emb(self, text, add_special_tokens=False):
        to_regress_tokens = self.tokenizer(
            text,
            return_tensors="pt",
            padding="longest",
            truncation=True,
            max_length=self.max_length,
            add_special_tokens=add_special_tokens,
        ).to(self.device)  # type: ignore

        targets = self.mask_human_targets(to_regress_tokens.input_ids)
        targets = targets.to(self.device)
        return to_regress_tokens, targets

    def interleav_wrap_chat(
        self, query, image, history=[], meta_instruction="", max_length=16384, hd_num=24
    ):
        self.max_length = max_length
        prompt = ""
        if meta_instruction:
            prompt += f"""{FROM_TOKEN_1}system\n{meta_instruction}{FROM_TOKEN_2}\n"""
        for record in history:
            prompt += f"""{FROM_TOKEN_1}user\n{record[0]}{FROM_TOKEN_2}\n{FROM_TOKEN_1}assistant\n{record[1]}{FROM_TOKEN_2}\n"""
        prompt += (
            f"""{FROM_TOKEN_1}user\n{query}{FROM_TOKEN_2}\n{FROM_TOKEN_1}assistant\n"""
        )

        image_nums = len(image)
        if image_nums == 1 and prompt.find("<ImageHere>") == -1:
            # print ('auto append image at the begining')
            prompt = "<ImageHere>" + prompt

        parts = prompt.split("<ImageHere>")
        wrap_embeds, wrap_im_mask = [], []
        temp_len = 0
        need_bos = True

        if len(parts) != image_nums + 1:
            # raise ValueError('Invalid <ImageHere> prompt format.')
            print("Waring! The image number != given position!")
        if image_nums > 1:
            hd_num = 6

        for idx, part in enumerate(parts):
            if need_bos or len(part) > 0:
                part_tokens = self.tokenizer(
                    part,
                    return_tensors="pt",
                    padding="longest",
                    add_special_tokens=need_bos,
                ).to(self.device)  # type: ignore
                if need_bos:
                    need_bos = False

                part_embeds = self.model.tok_embeddings(part_tokens.input_ids)
                wrap_embeds.append(part_embeds)
                wrap_im_mask.append(torch.zeros(part_embeds.shape[:2]))
                temp_len += part_embeds.shape[1]
            if idx < image_nums:
                img = self.encode_img(image[idx], hd_num)
                wrap_embeds.append(img)
                wrap_im_mask.append(torch.ones(img.shape[:2]))
                temp_len += img.shape[1]

            if temp_len > self.max_length:
                break

        wrap_embeds = torch.cat(wrap_embeds, dim=1)
        wrap_im_mask = torch.cat(wrap_im_mask, dim=1)
        wrap_embeds = wrap_embeds[:, : self.max_length].to(self.device)
        wrap_im_mask = wrap_im_mask[:, : self.max_length].to(self.device).bool()
        inputs = {"inputs_embeds": wrap_embeds}
        return inputs, wrap_im_mask, temp_len

    def interleav_wrap(self, img_list: list[torch.Tensor], text_list, image_nums):
        temp_embeds = []
        temp_im_mask = []
        temp_tars = []

        # encode_image
        if len(img_list) > 0:
            img_embeds, img_split = self.vit(
                img_list, self.plora_glb_GN, self.plora_sub_GN
            )
            img_embeds = self.vision_proj(img_embeds)
        else:
            img_embeds = None
            img_split = []

        text_list = text_list[0]
        for idx, text in enumerate(text_list):
            image_num = image_nums[idx]
            im_id = int(np.sum(image_nums[:idx]))
            images = []
            for i in range(image_nums[idx]):
                st = int(np.sum(img_split[: im_id + i]))
                sp = img_split[im_id + i]
                temp_img = img_embeds[:, st : st + sp]  # type: ignore
                images.append(temp_img)

            if image_num == 1 and text.find("<ImageHere>") == -1:
                text = "<ImageHere>" + text
            parts = text.split("<ImageHere>")

            wrap_tokens, wrap_embeds, wrap_im_mask = [], [], []
            temp_len = 0
            need_bos = True
            for idx, part in enumerate(parts):
                if len(part) > 0:
                    part_tokens = self.tokenizer(
                        part,
                        return_tensors="pt",
                        padding="longest",
                        add_special_tokens=need_bos,
                    ).to(self.device)  # type: ignore
                    if need_bos:
                        need_bos = False
                    wrap_tokens.append(part_tokens.input_ids)
                    part_embeds = self.model.tok_embeddings(part_tokens.input_ids)
                    wrap_embeds.append(part_embeds)
                    wrap_im_mask.append(
                        torch.zeros(part_embeds.shape[:2]).to(self.device)
                    )
                    temp_len += part_embeds.shape[1]
                if idx < image_num:
                    wrap_embeds.append(images[idx])
                    wrap_token = (
                        torch.ones(images[idx].shape[:2], dtype=torch.long).to(
                            self.device
                        )
                        * -100
                    )
                    wrap_tokens.append(wrap_token)
                    wrap_im_mask.append(
                        torch.ones(images[idx].shape[:2]).to(self.device)
                    )
                    temp_len += images[idx].shape[1]
                if temp_len > self.max_length:
                    break
            wrap_tokens = torch.cat(wrap_tokens, dim=1)
            wrap_embeds = torch.cat(wrap_embeds, dim=1)
            wrap_im_mask = torch.cat(wrap_im_mask, dim=1)

            wrap_target = self.mask_human_targets(wrap_tokens).to(self.device)

            temp_embeds.append(wrap_embeds)
            temp_im_mask.append(wrap_im_mask)
            temp_tars.append(wrap_target)

        temp_max_len = np.max([i.shape[1] for i in temp_embeds])
        temp_max_len = min(temp_max_len, self.max_length)

        final_input, final_atts, final_tars, final_mask = [], [], [], []
        pad = torch.ones([1, 1]) * self.tokenizer.pad_token_id  # type: ignore
        pad = pad.long().to(self.device)
        pad_emb = self.model.tok_embeddings(pad)

        for idx in range(len(temp_embeds)):
            temp_len = temp_embeds[idx].shape[1]
            if temp_len >= temp_max_len:
                final_input.append(temp_embeds[idx][:, :temp_max_len])
                final_atts.append(
                    torch.ones(1, temp_max_len).to(wrap_target.dtype).to(self.device)
                )
                final_tars.append(temp_tars[idx][:, :temp_max_len])
                final_mask.append(temp_im_mask[idx][:, :temp_max_len])
            else:
                final_input.append(
                    torch.cat(
                        [
                            temp_embeds[idx],
                            pad_emb.repeat(1, temp_max_len - temp_len, 1),
                        ],
                        dim=1,
                    )
                )
                final_atts.append(
                    torch.cat(
                        [
                            torch.ones(1, temp_len),
                            torch.zeros(1, temp_max_len - temp_len),
                        ],
                        dim=1,
                    )
                    .to(wrap_target.dtype)
                    .to(self.device)
                )
                final_tars.append(
                    torch.cat(
                        [
                            temp_tars[idx],
                            (torch.ones(1, temp_max_len - temp_len) * -100)
                            .to(wrap_target.dtype)
                            .to(self.device),
                        ],
                        dim=1,
                    )
                )
                final_mask.append(
                    torch.cat(
                        [
                            temp_im_mask[idx],
                            (torch.zeros(1, temp_max_len - temp_len))
                            .to(wrap_target.dtype)
                            .to(self.device),
                        ],
                        dim=1,
                    )
                )

        inputs_embeds = torch.cat(final_input, dim=0)
        attention_mask = torch.cat(final_atts, dim=0)
        targets = torch.cat(final_tars, dim=0)
        im_mask = torch.cat(final_mask, dim=0)

        return inputs_embeds, attention_mask, targets, im_mask

    def mask_human_targets(self, input_ids, pure=False):
        target_batch = []
        for bs in range(input_ids.shape[0]):
            ids = input_ids[bs]
            targets = copy.deepcopy(ids)
            end_count = 0
            last_eoa = 0
            for i, temp_id in enumerate(ids):
                if temp_id == 92542:
                    if end_count % 2 == 0:
                        targets[last_eoa : i + 6] = -100
                    else:
                        last_eoa = i + 1
                    end_count += 1
                # # eos and following pad
                elif temp_id == 2:
                    # loss on eos, but not on pad
                    targets[i + 1 :] = -100
                    break
            # trunction, end at last question
            if temp_id != 2 and end_count % 2 == 0:
                # mask all after the last answer
                targets[last_eoa + 1 :] = -100
            target_batch.append(targets.unsqueeze(0))
        target_batch = torch.cat(target_batch, dim=0)
        return target_batch

    @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
    @replace_return_docstrings(
        output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
    )
    def forward(
        self,
        input_ids: torch.LongTensor | None = None,
        attention_mask: Optional[torch.Tensor] | None = None,
        position_ids: Optional[torch.LongTensor] | None = None,
        past_key_values: Optional[List[torch.FloatTensor]] | None = None,
        inputs_embeds: Optional[torch.FloatTensor] | None = None,
        labels: Optional[torch.LongTensor] | None = None,
        use_cache: Optional[bool] | None = None,
        output_attentions: Optional[bool] | None = None,
        output_hidden_states: Optional[bool] | None = None,
        return_dict: Optional[bool] | None = None,
        **kwargs,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        r"""
        Args:
            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
                config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
                (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
        Returns:
        """

        samples = kwargs.get("samples", None)
        if samples:
            infer_mode = samples.get("infer_mode", "base")
            if samples["data_type"][0] == "multi":
                has_img = True
            else:
                has_img = False

            # encode text
            text = samples["text_input"]
            # encode image
            if has_img:
                image = samples["image"][0]
                bs = len(samples["text_input"][0])
                image_nums = []
                temp_image = []
                for im in image:
                    if type(im) is list:
                        image_nums.append(len(im))
                        temp_image.extend(im)
                    else:
                        image_nums.append(1)
                        temp_image.append(im)
                image = temp_image
                assert type(image) is list and len(image_nums) == bs

                to_regress_embeds, attention_mask, targets, im_mask = (
                    self.interleav_wrap(image, text, image_nums)
                )
            else:
                to_regress_tokens, targets = self.text2emb(
                    text, add_special_tokens=True
                )
                to_regress_embeds = self.model.tok_embeddings(
                    to_regress_tokens.input_ids
                )
                attention_mask = to_regress_tokens.attention_mask
                im_mask = torch.zeros(to_regress_embeds.shape[:2]).cuda()

            inputs_embeds = to_regress_embeds[:, : self.max_length]  # type: ignore
            attention_mask = attention_mask[:, : self.max_length]  # type: ignore
            targets = targets[:, : self.max_length]
            im_mask = im_mask[:, : self.max_length].bool()
            labels = targets  # type: ignore
        else:
            im_mask = kwargs.get("im_mask", None)
            infer_mode = kwargs.get("infer_mode", "base")
            if im_mask is None and inputs_embeds is not None:
                im_mask = torch.zeros(inputs_embeds.shape[:2]).to(inputs_embeds.device)
                im_mask = im_mask.bool()

        output_attentions = (
            output_attentions
            if output_attentions is not None
            else self.config.output_attentions
        )
        output_hidden_states = (
            output_hidden_states
            if output_hidden_states is not None
            else self.config.output_hidden_states
        )
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        outputs = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            im_mask=im_mask,
            infer_mode=infer_mode,
        )

        hidden_states = outputs[0]
        logits = self.output(hidden_states)
        logits = logits.float()

        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = CrossEntropyLoss()
            shift_logits = shift_logits.view(-1, self.vocab_size)
            shift_labels = shift_labels.view(-1)
            # Enable model parallelism
            shift_labels = shift_labels.to(shift_logits.device)
            loss = loss_fct(shift_logits, shift_labels)

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

    def prepare_inputs_for_generation(
        self,
        input_ids,
        past_key_values=None,
        attention_mask=None,
        inputs_embeds=None,
        im_mask=None,
        infer_mode="base",
        **kwargs,
    ):
        if past_key_values is not None:
            past_length = past_key_values[0][0].shape[2]

            # Some generation methods already pass only the last input ID
            if input_ids.shape[1] > past_length:
                remove_prefix_length = past_length
            else:
                # Default to old behavior: keep only final ID
                remove_prefix_length = input_ids.shape[1] - 1

            input_ids = input_ids[:, remove_prefix_length:]

        position_ids = kwargs.get("position_ids", None)
        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if past_key_values:
                position_ids = position_ids[:, -input_ids.shape[1] :]

        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and past_key_values is None:
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            model_inputs = {"input_ids": input_ids}

        im_mask = im_mask

        model_inputs.update(
            {
                "position_ids": position_ids,
                "past_key_values": past_key_values,
                "use_cache": kwargs.get("use_cache"),
                "attention_mask": attention_mask,
                "im_mask": im_mask,
                "infer_mode": infer_mode,
            }
        )
        return model_inputs

    @staticmethod
    def _reorder_cache(past_key_values, beam_idx):
        reordered_past = ()
        for layer_past in past_key_values:
            reordered_past += (
                tuple(
                    past_state.index_select(0, beam_idx.to(past_state.device))
                    for past_state in layer_past
                ),
            )
        return reordered_past

    def build_inputs(
        self,
        tokenizer,
        query: str,
        history: List[Tuple[str, str]] = [],
        meta_instruction="",
    ):
        prompt = ""
        if meta_instruction:
            prompt += f"""<s>{FROM_TOKEN_1}system\n{meta_instruction}{FROM_TOKEN_2}\n"""
        else:
            prompt += "<s>"
        for record in history:
            prompt += f"""{FROM_TOKEN_1}user\n{record[0]}{FROM_TOKEN_2}\n{FROM_TOKEN_1}assistant\n{record[1]}{FROM_TOKEN_2}\n"""
        prompt += (
            f"""{FROM_TOKEN_1}user\n{query}{FROM_TOKEN_2}\n{FROM_TOKEN_1}assistant\n"""
        )
        return tokenizer([prompt], return_tensors="pt")

    @torch.no_grad()
    def chat(
        self,
        tokenizer,
        query: str,
        image: List[Tuple[str, str]] = [],
        hd_num: int = 24,
        history: List[Tuple[str, str]] = [],
        streamer: Optional[BaseStreamer] = None,
        max_new_tokens: int = 1024,
        do_sample: bool = True,
        num_beams: int = 1,
        temperature: float = 1.0,
        top_p: float = 0.8,
        repetition_penalty: float = 1.005,
        infer_mode: str = "base",
        use_meta: bool = False,
        meta_instruction: str = "You are an AI assistant whose name is InternLM-XComposer (浦语·灵笔).\n"
        "- InternLM-XComposer (浦语·灵笔) is a multi-modality conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n"
        "- InternLM-XComposer (浦语·灵笔) can understand and communicate fluently in the language chosen by the user such as English and 中文.\n"
        "- InternLM-XComposer (浦语·灵笔) is capable of comprehending and articulating responses effectively based on the provided image.",
        **kwargs,
    ):
        if not use_meta:
            meta_instruction = ""
        if image is None:
            inputs = self.build_inputs(tokenizer, query, history, meta_instruction)
            im_mask = torch.zeros(inputs["input_ids"].shape[:2]).cuda().bool()
        else:
            inputs, im_mask, _ = self.interleav_wrap_chat(
                query,
                image,
                history=history,
                meta_instruction=meta_instruction,
                hd_num=hd_num,
            )
        inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)}
        # also add end-of-assistant token in eos token id to avoid unnecessary generation
        eos_token_id = [
            tokenizer.eos_token_id,
            tokenizer.convert_tokens_to_ids([FROM_TOKEN_2])[0],
        ]
        outputs = self.generate(
            **inputs,
            streamer=streamer,
            max_new_tokens=max_new_tokens,
            num_beams=num_beams,
            do_sample=do_sample,
            temperature=temperature,
            top_p=top_p,
            eos_token_id=eos_token_id,
            repetition_penalty=repetition_penalty,
            im_mask=im_mask,
            infer_mode=infer_mode,
            **kwargs,
        )
        if image is None:
            outputs = outputs[0].cpu().tolist()[len(inputs["input_ids"][0]) :]
        else:
            outputs = outputs[0].cpu().tolist()
        response = tokenizer.decode(outputs, skip_special_tokens=True)
        response = response.split(FROM_TOKEN_2)[0]
        history = history + [(query, response)]
        return response, history

    @torch.no_grad()
    def write_artical(
        self,
        inst: str,
        image: List[Tuple[str, str]] = [],
        hd_num: int = 25,
        history: List[Tuple[str, str]] = [],
        streamer: Optional[BaseStreamer] = None,  # type: ignore
        max_new_tokens: int = 1024,
        do_sample: bool = True,
        num_beams: int = 1,
        temperature: float = 1.0,
        top_p: float = 0.8,
        repetition_penalty: float = 1.005,
        max_length: int = 8192,
        seed: int = -1,
        use_meta: bool = False,
        **kwargs,
    ):
        meta_instruction = """You are an AI assistant whose name is InternLM-XComposer (浦语·灵笔).
- InternLM-XComposer (浦语·灵笔) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
- InternLM-XComposer (浦语·灵笔) can understand and communicate fluently in the language chosen by the user such as English and 中文.
"""
        if seed != -1:
            set_seed(seed)
        if len(history):
            print(
                "Only chat function support multi round now, history will be ignored in the artical mode"
            )
        stop_words_ids = [92542]
        stopping_criteria = get_stopping_criteria(stop_words_ids)

        if not use_meta:
            meta_instruction = ""
        with torch.no_grad():
            inputs, im_mask, len_input_tokens = self.interleav_wrap_chat(
                inst, image, meta_instruction=meta_instruction, max_length=max_length
            )
        with torch.autocast(device_type="cuda", dtype=torch.float16):
            with torch.no_grad():
                generate = self.generate(
                    inputs_embeds=inputs["inputs_embeds"],
                    do_sample=do_sample,
                    num_beams=num_beams,
                    temperature=temperature,
                    repetition_penalty=repetition_penalty,
                    stopping_criteria=stopping_criteria,
                    max_new_tokens=max_length - len_input_tokens,
                    top_p=0.8,
                    top_k=40,
                    length_penalty=1.0,
                    im_mask=im_mask,
                    infer_mode="write",
                )

        response = generate[0].tolist()
        response = self.tokenizer.decode(response, skip_special_tokens=True)  # type: ignore
        # remove eoa
        response = response.replace(FROM_TOKEN_2, "")
        response = response.replace(FROM_TOKEN_1, "")

        return response

    @torch.no_grad()
    def write_webpage(
        self,
        inst: str,
        image: List[Tuple[str, str]] = [],
        max_new_tokens: int = 4800,
        do_sample: bool = True,
        num_beams: int = 2,
        temperature: float = 1.0,
        repetition_penalty: float = 3.0,
        seed: int = -1,
        use_meta: bool = False,
        task: str = "Instruction-aware Webpage Generation",
        **kwargs,
    ):
        if seed != -1:
            set_random_seed(seed, set_cudnn=True)
        with torch.no_grad():
            inputs, im_mask, len_input_tokens = self.interleav_wrap_chat(inst, image)

        with torch.autocast(device_type="cuda", dtype=torch.float16):
            with torch.no_grad():
                generate = self.generate(
                    inputs_embeds=inputs["inputs_embeds"],
                    do_sample=do_sample,
                    temperature=temperature,
                    num_beams=num_beams,
                    repetition_penalty=repetition_penalty,
                    max_new_tokens=max_new_tokens,
                    im_mask=im_mask,
                    infer_mode="web",
                )
        response = generate[0].tolist()
        response = self.tokenizer.decode(response, skip_special_tokens=True)  # type: ignore
        # remove eoa
        response = response.replace(FROM_TOKEN_2, "")
        out = response.replace(FROM_TOKEN_1, "")
        image_type = "random"
        pattern = r"""https://source\.unsplash\.com/random/(\d+)x(\d+)/\?([^'"]+)"""
        if image_type == "placeholder":
            out = re.sub(pattern, r"https://placehold.co/\1x\2", out)
        elif image_type == "random":
            out = re.sub(pattern, r"https://picsum.photos/\1/\2", out)

        with open(task.replace(" ", "_") + ".html", "w") as f:
            f.write(out)
        return out

    @torch.no_grad()
    def resume_2_webpage(
        self,
        inst: str,
        image: List[Tuple[str, str]] = [],
        max_new_tokens: int = 4800,
        do_sample: bool = True,
        num_beams: int = 2,
        temperature: float = 1.0,
        repetition_penalty: float = 3.0,
        seed: int = -1,
        use_meta: bool = False,
        task: str = "Resume-to-Personal Page",
        **kwargs,
    ):
        if seed != -1:
            set_random_seed(seed, set_cudnn=True)
        try:
            with open(inst) as fd:
                resume = fd.read()
        except Exception:
            print("The input should be a resume with markdown format.")
        inst = " Generate a personal page using the content in the resume:" + resume
        with torch.no_grad():
            inputs, im_mask, len_input_tokens = self.interleav_wrap_chat(inst, image)
        with torch.autocast(device_type="cuda", dtype=torch.float16):
            with torch.no_grad():
                generate = self.generate(
                    inputs_embeds=inputs["inputs_embeds"],
                    do_sample=do_sample,
                    temperature=temperature,
                    num_beams=num_beams,
                    repetition_penalty=repetition_penalty,
                    max_new_tokens=max_new_tokens,
                    im_mask=im_mask,
                    infer_mode="web",
                )
        response = generate[0].tolist()
        response = self.tokenizer.decode(response, skip_special_tokens=True)  # type: ignore
        # remove eoa
        response = response.replace(FROM_TOKEN_2, "")
        html = response.replace(FROM_TOKEN_1, "")

        if seed != -1:
            set_random_seed(seed, set_cudnn=True)
        js_inst = " Generate JavaScript events for the html code:" + html
        with torch.no_grad():
            inputs, im_mask, len_input_tokens = self.interleav_wrap_chat(js_inst, image)
        with torch.autocast(device_type="cuda", dtype=torch.float16):
            with torch.no_grad():
                generate = self.generate(
                    inputs_embeds=inputs["inputs_embeds"],
                    do_sample=do_sample,
                    temperature=temperature,
                    num_beams=num_beams,
                    repetition_penalty=repetition_penalty,
                    max_new_tokens=max_new_tokens,
                    im_mask=im_mask,
                    infer_mode="web",
                )
        response = generate[0].tolist()
        response = self.tokenizer.decode(response, skip_special_tokens=True)  # type: ignore
        # remove eoa
        response = response.replace(FROM_TOKEN_2, "")
        js = response.replace(FROM_TOKEN_1, "")

        if re.search(r"</script>", html):
            js = re.findall(r"<script>([\s\S]*?)<\/script>", js)
            html = re.sub(r"(</script>)", f"\n{js}\n" + r"\1", html)
        elif re.search(r"</html>", html):
            html = re.sub(r"(</html>)", f"\n{js}\n" + r"\1", html)
        out = html

        image_type = "random"
        pattern = r"""https://source\.unsplash\.com/random/(\d+)x(\d+)/\?([^'"]+)"""
        if image_type == "placeholder":
            out = re.sub(pattern, r"https://placehold.co/\1x\2", out)
        elif image_type == "random":
            out = re.sub(pattern, r"https://picsum.photos/\1/\2", out)

        with open(task.replace(" ", "_") + ".html", "w") as f:
            f.write(out)
        return out

    @torch.no_grad()
    def screen_2_webpage(
        self,
        inst: str,
        image: List[Tuple[str, str]] = [],
        max_new_tokens: int = 4800,
        do_sample: bool = True,
        num_beams: int = 2,
        temperature: float = 1.0,
        repetition_penalty: float = 3.0,
        seed: int = -1,
        use_meta: bool = False,
        task: str = "Screenshot-to-Webpage",
        **kwargs,
    ):
        if seed != -1:
            set_random_seed(seed, set_cudnn=True)
        if len(image) == 0:
            print("No image is provided, skip")
            return ""
        inst = " Generate the HTML code of this web image with Tailwind CSS."
        with torch.no_grad():
            inputs, im_mask, len_input_tokens = self.interleav_wrap_chat(inst, image)

        with torch.autocast(device_type="cuda"):
            with torch.no_grad():
                generate = self.generate(
                    inputs_embeds=inputs["inputs_embeds"],
                    do_sample=do_sample,
                    temperature=temperature,
                    num_beams=num_beams,
                    repetition_penalty=repetition_penalty,
                    max_new_tokens=max_new_tokens,
                    im_mask=im_mask,
                    infer_mode="web",
                )
        response = generate[0].tolist()
        response = self.tokenizer.decode(response, skip_special_tokens=True)  # type: ignore
        # remove eoa
        response = response.replace(FROM_TOKEN_2, "")
        out = response.replace(FROM_TOKEN_1, "")
        image_type = "random"
        pattern = r"""https://source\.unsplash\.com/random/(\d+)x(\d+)/\?([^'"]+)"""
        if image_type == "placeholder":
            out = re.sub(pattern, r"https://placehold.co/\1x\2", out)
        elif image_type == "random":
            out = re.sub(pattern, r"https://picsum.photos/\1/\2", out)

        with open(task.replace(" ", "_") + ".html", "w") as f:
            f.write(out)
        return out

    def add_tokens(self, new_tokens: list[str]):
        self.tokenizer.add_tokens(new_tokens)  # type: ignore
        self.model.resize_token_embeddings(len(self.tokenizer))
        self.vocab_size = len(self.tokenizer)

        # self.output needs to be resized accordingly but without loosing the weight
        new_output = nn.Linear(
            self.model.config.hidden_size,
            self.vocab_size,
            bias=False,
            dtype=self.output.weight.dtype,
            device=self.output.weight.device,
        ).to(self.device)
        new_output.weight.data[: self.output.weight.shape[0]] = self.output.weight.data
        dummy_input_for_output = torch.zeros(
            1,
            1,
            self.model.config.hidden_size,
            device=new_output.weight.device,
            dtype=new_output.weight.dtype,
        ).type_as(new_output.weight)
        # Check if output has same behavior
        dummy_old_output: torch.Tensor = self.output(dummy_input_for_output)
        dummy_new_output = new_output(dummy_input_for_output)
        assert dummy_old_output.allclose(
            dummy_new_output[:, :, : self.output.weight.shape[0]]
        )

        self.output = new_output