|
import torch |
|
import torch.nn.functional as F |
|
|
|
from mmdet.core import (bbox2result, bbox2roi, bbox_mapping, merge_aug_bboxes, |
|
merge_aug_masks, multiclass_nms) |
|
from ..builder import HEADS, build_head, build_roi_extractor |
|
from .cascade_roi_head import CascadeRoIHead |
|
|
|
|
|
@HEADS.register_module() |
|
class SCNetRoIHead(CascadeRoIHead): |
|
"""RoIHead for `SCNet <https://arxiv.org/abs/2012.10150>`_. |
|
|
|
Args: |
|
num_stages (int): number of cascade stages. |
|
stage_loss_weights (list): loss weight of cascade stages. |
|
semantic_roi_extractor (dict): config to init semantic roi extractor. |
|
semantic_head (dict): config to init semantic head. |
|
feat_relay_head (dict): config to init feature_relay_head. |
|
glbctx_head (dict): config to init global context head. |
|
""" |
|
|
|
def __init__(self, |
|
num_stages, |
|
stage_loss_weights, |
|
semantic_roi_extractor=None, |
|
semantic_head=None, |
|
feat_relay_head=None, |
|
glbctx_head=None, |
|
**kwargs): |
|
super(SCNetRoIHead, self).__init__(num_stages, stage_loss_weights, |
|
**kwargs) |
|
assert self.with_bbox and self.with_mask |
|
assert not self.with_shared_head |
|
|
|
if semantic_head is not None: |
|
self.semantic_roi_extractor = build_roi_extractor( |
|
semantic_roi_extractor) |
|
self.semantic_head = build_head(semantic_head) |
|
|
|
if feat_relay_head is not None: |
|
self.feat_relay_head = build_head(feat_relay_head) |
|
|
|
if glbctx_head is not None: |
|
self.glbctx_head = build_head(glbctx_head) |
|
|
|
def init_mask_head(self, mask_roi_extractor, mask_head): |
|
"""Initialize ``mask_head``""" |
|
if mask_roi_extractor is not None: |
|
self.mask_roi_extractor = build_roi_extractor(mask_roi_extractor) |
|
self.mask_head = build_head(mask_head) |
|
|
|
def init_weights(self, pretrained): |
|
"""Initialize the weights in head. |
|
|
|
Args: |
|
pretrained (str, optional): Path to pre-trained weights. |
|
Defaults to None. |
|
""" |
|
for i in range(self.num_stages): |
|
if self.with_bbox: |
|
self.bbox_roi_extractor[i].init_weights() |
|
self.bbox_head[i].init_weights() |
|
if self.with_mask: |
|
self.mask_roi_extractor.init_weights() |
|
self.mask_head.init_weights() |
|
if self.with_semantic: |
|
self.semantic_head.init_weights() |
|
if self.with_glbctx: |
|
self.glbctx_head.init_weights() |
|
if self.with_feat_relay: |
|
self.feat_relay_head.init_weights() |
|
|
|
@property |
|
def with_semantic(self): |
|
"""bool: whether the head has semantic head""" |
|
return hasattr(self, |
|
'semantic_head') and self.semantic_head is not None |
|
|
|
@property |
|
def with_feat_relay(self): |
|
"""bool: whether the head has feature relay head""" |
|
return (hasattr(self, 'feat_relay_head') |
|
and self.feat_relay_head is not None) |
|
|
|
@property |
|
def with_glbctx(self): |
|
"""bool: whether the head has global context head""" |
|
return hasattr(self, 'glbctx_head') and self.glbctx_head is not None |
|
|
|
def _fuse_glbctx(self, roi_feats, glbctx_feat, rois): |
|
"""Fuse global context feats with roi feats.""" |
|
assert roi_feats.size(0) == rois.size(0) |
|
img_inds = torch.unique(rois[:, 0].cpu(), sorted=True).long() |
|
fused_feats = torch.zeros_like(roi_feats) |
|
for img_id in img_inds: |
|
inds = (rois[:, 0] == img_id.item()) |
|
fused_feats[inds] = roi_feats[inds] + glbctx_feat[img_id] |
|
return fused_feats |
|
|
|
def _slice_pos_feats(self, feats, sampling_results): |
|
"""Get features from pos rois.""" |
|
num_rois = [res.bboxes.size(0) for res in sampling_results] |
|
num_pos_rois = [res.pos_bboxes.size(0) for res in sampling_results] |
|
inds = torch.zeros(sum(num_rois), dtype=torch.bool) |
|
start = 0 |
|
for i in range(len(num_rois)): |
|
start = 0 if i == 0 else start + num_rois[i - 1] |
|
stop = start + num_pos_rois[i] |
|
inds[start:stop] = 1 |
|
sliced_feats = feats[inds] |
|
return sliced_feats |
|
|
|
def _bbox_forward(self, |
|
stage, |
|
x, |
|
rois, |
|
semantic_feat=None, |
|
glbctx_feat=None): |
|
"""Box head forward function used in both training and testing.""" |
|
bbox_roi_extractor = self.bbox_roi_extractor[stage] |
|
bbox_head = self.bbox_head[stage] |
|
bbox_feats = bbox_roi_extractor( |
|
x[:len(bbox_roi_extractor.featmap_strides)], rois) |
|
if self.with_semantic and semantic_feat is not None: |
|
bbox_semantic_feat = self.semantic_roi_extractor([semantic_feat], |
|
rois) |
|
if bbox_semantic_feat.shape[-2:] != bbox_feats.shape[-2:]: |
|
bbox_semantic_feat = F.adaptive_avg_pool2d( |
|
bbox_semantic_feat, bbox_feats.shape[-2:]) |
|
bbox_feats += bbox_semantic_feat |
|
if self.with_glbctx and glbctx_feat is not None: |
|
bbox_feats = self._fuse_glbctx(bbox_feats, glbctx_feat, rois) |
|
cls_score, bbox_pred, relayed_feat = bbox_head( |
|
bbox_feats, return_shared_feat=True) |
|
|
|
bbox_results = dict( |
|
cls_score=cls_score, |
|
bbox_pred=bbox_pred, |
|
relayed_feat=relayed_feat) |
|
return bbox_results |
|
|
|
def _mask_forward(self, |
|
x, |
|
rois, |
|
semantic_feat=None, |
|
glbctx_feat=None, |
|
relayed_feat=None): |
|
"""Mask head forward function used in both training and testing.""" |
|
mask_feats = self.mask_roi_extractor( |
|
x[:self.mask_roi_extractor.num_inputs], rois) |
|
if self.with_semantic and semantic_feat is not None: |
|
mask_semantic_feat = self.semantic_roi_extractor([semantic_feat], |
|
rois) |
|
if mask_semantic_feat.shape[-2:] != mask_feats.shape[-2:]: |
|
mask_semantic_feat = F.adaptive_avg_pool2d( |
|
mask_semantic_feat, mask_feats.shape[-2:]) |
|
mask_feats += mask_semantic_feat |
|
if self.with_glbctx and glbctx_feat is not None: |
|
mask_feats = self._fuse_glbctx(mask_feats, glbctx_feat, rois) |
|
if self.with_feat_relay and relayed_feat is not None: |
|
mask_feats = mask_feats + relayed_feat |
|
mask_pred = self.mask_head(mask_feats) |
|
mask_results = dict(mask_pred=mask_pred) |
|
|
|
return mask_results |
|
|
|
def _bbox_forward_train(self, |
|
stage, |
|
x, |
|
sampling_results, |
|
gt_bboxes, |
|
gt_labels, |
|
rcnn_train_cfg, |
|
semantic_feat=None, |
|
glbctx_feat=None): |
|
"""Run forward function and calculate loss for box head in training.""" |
|
bbox_head = self.bbox_head[stage] |
|
rois = bbox2roi([res.bboxes for res in sampling_results]) |
|
bbox_results = self._bbox_forward( |
|
stage, |
|
x, |
|
rois, |
|
semantic_feat=semantic_feat, |
|
glbctx_feat=glbctx_feat) |
|
|
|
bbox_targets = bbox_head.get_targets(sampling_results, gt_bboxes, |
|
gt_labels, rcnn_train_cfg) |
|
loss_bbox = bbox_head.loss(bbox_results['cls_score'], |
|
bbox_results['bbox_pred'], rois, |
|
*bbox_targets) |
|
|
|
bbox_results.update( |
|
loss_bbox=loss_bbox, rois=rois, bbox_targets=bbox_targets) |
|
return bbox_results |
|
|
|
def _mask_forward_train(self, |
|
x, |
|
sampling_results, |
|
gt_masks, |
|
rcnn_train_cfg, |
|
semantic_feat=None, |
|
glbctx_feat=None, |
|
relayed_feat=None): |
|
"""Run forward function and calculate loss for mask head in |
|
training.""" |
|
pos_rois = bbox2roi([res.pos_bboxes for res in sampling_results]) |
|
mask_results = self._mask_forward( |
|
x, |
|
pos_rois, |
|
semantic_feat=semantic_feat, |
|
glbctx_feat=glbctx_feat, |
|
relayed_feat=relayed_feat) |
|
|
|
mask_targets = self.mask_head.get_targets(sampling_results, gt_masks, |
|
rcnn_train_cfg) |
|
pos_labels = torch.cat([res.pos_gt_labels for res in sampling_results]) |
|
loss_mask = self.mask_head.loss(mask_results['mask_pred'], |
|
mask_targets, pos_labels) |
|
|
|
mask_results = loss_mask |
|
return mask_results |
|
|
|
def forward_train(self, |
|
x, |
|
img_metas, |
|
proposal_list, |
|
gt_bboxes, |
|
gt_labels, |
|
gt_bboxes_ignore=None, |
|
gt_masks=None, |
|
gt_semantic_seg=None): |
|
""" |
|
Args: |
|
x (list[Tensor]): list of multi-level img features. |
|
|
|
img_metas (list[dict]): list of image info dict where each dict |
|
has: 'img_shape', 'scale_factor', 'flip', and may also contain |
|
'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'. |
|
For details on the values of these keys see |
|
`mmdet/datasets/pipelines/formatting.py:Collect`. |
|
|
|
proposal_list (list[Tensors]): list of region proposals. |
|
|
|
gt_bboxes (list[Tensor]): Ground truth bboxes for each image with |
|
shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. |
|
|
|
gt_labels (list[Tensor]): class indices corresponding to each box |
|
|
|
gt_bboxes_ignore (None, list[Tensor]): specify which bounding |
|
boxes can be ignored when computing the loss. |
|
|
|
gt_masks (None, Tensor) : true segmentation masks for each box |
|
used if the architecture supports a segmentation task. |
|
|
|
gt_semantic_seg (None, list[Tensor]): semantic segmentation masks |
|
used if the architecture supports semantic segmentation task. |
|
|
|
Returns: |
|
dict[str, Tensor]: a dictionary of loss components |
|
""" |
|
losses = dict() |
|
|
|
|
|
if self.with_semantic: |
|
semantic_pred, semantic_feat = self.semantic_head(x) |
|
loss_seg = self.semantic_head.loss(semantic_pred, gt_semantic_seg) |
|
losses['loss_semantic_seg'] = loss_seg |
|
else: |
|
semantic_feat = None |
|
|
|
|
|
if self.with_glbctx: |
|
mc_pred, glbctx_feat = self.glbctx_head(x) |
|
loss_glbctx = self.glbctx_head.loss(mc_pred, gt_labels) |
|
losses['loss_glbctx'] = loss_glbctx |
|
else: |
|
glbctx_feat = None |
|
|
|
for i in range(self.num_stages): |
|
self.current_stage = i |
|
rcnn_train_cfg = self.train_cfg[i] |
|
lw = self.stage_loss_weights[i] |
|
|
|
|
|
sampling_results = [] |
|
bbox_assigner = self.bbox_assigner[i] |
|
bbox_sampler = self.bbox_sampler[i] |
|
num_imgs = len(img_metas) |
|
if gt_bboxes_ignore is None: |
|
gt_bboxes_ignore = [None for _ in range(num_imgs)] |
|
|
|
for j in range(num_imgs): |
|
assign_result = bbox_assigner.assign(proposal_list[j], |
|
gt_bboxes[j], |
|
gt_bboxes_ignore[j], |
|
gt_labels[j]) |
|
sampling_result = bbox_sampler.sample( |
|
assign_result, |
|
proposal_list[j], |
|
gt_bboxes[j], |
|
gt_labels[j], |
|
feats=[lvl_feat[j][None] for lvl_feat in x]) |
|
sampling_results.append(sampling_result) |
|
|
|
bbox_results = \ |
|
self._bbox_forward_train( |
|
i, x, sampling_results, gt_bboxes, gt_labels, |
|
rcnn_train_cfg, semantic_feat, glbctx_feat) |
|
roi_labels = bbox_results['bbox_targets'][0] |
|
|
|
for name, value in bbox_results['loss_bbox'].items(): |
|
losses[f's{i}.{name}'] = ( |
|
value * lw if 'loss' in name else value) |
|
|
|
|
|
if i < self.num_stages - 1: |
|
pos_is_gts = [res.pos_is_gt for res in sampling_results] |
|
with torch.no_grad(): |
|
proposal_list = self.bbox_head[i].refine_bboxes( |
|
bbox_results['rois'], roi_labels, |
|
bbox_results['bbox_pred'], pos_is_gts, img_metas) |
|
|
|
if self.with_feat_relay: |
|
relayed_feat = self._slice_pos_feats(bbox_results['relayed_feat'], |
|
sampling_results) |
|
relayed_feat = self.feat_relay_head(relayed_feat) |
|
else: |
|
relayed_feat = None |
|
|
|
mask_results = self._mask_forward_train(x, sampling_results, gt_masks, |
|
rcnn_train_cfg, semantic_feat, |
|
glbctx_feat, relayed_feat) |
|
mask_lw = sum(self.stage_loss_weights) |
|
losses['loss_mask'] = mask_lw * mask_results['loss_mask'] |
|
|
|
return losses |
|
|
|
def simple_test(self, x, proposal_list, img_metas, rescale=False): |
|
"""Test without augmentation.""" |
|
if self.with_semantic: |
|
_, semantic_feat = self.semantic_head(x) |
|
else: |
|
semantic_feat = None |
|
|
|
if self.with_glbctx: |
|
mc_pred, glbctx_feat = self.glbctx_head(x) |
|
else: |
|
glbctx_feat = None |
|
|
|
num_imgs = len(proposal_list) |
|
img_shapes = tuple(meta['img_shape'] for meta in img_metas) |
|
ori_shapes = tuple(meta['ori_shape'] for meta in img_metas) |
|
scale_factors = tuple(meta['scale_factor'] for meta in img_metas) |
|
|
|
|
|
ms_scores = [] |
|
rcnn_test_cfg = self.test_cfg |
|
|
|
rois = bbox2roi(proposal_list) |
|
for i in range(self.num_stages): |
|
bbox_head = self.bbox_head[i] |
|
bbox_results = self._bbox_forward( |
|
i, |
|
x, |
|
rois, |
|
semantic_feat=semantic_feat, |
|
glbctx_feat=glbctx_feat) |
|
|
|
cls_score = bbox_results['cls_score'] |
|
bbox_pred = bbox_results['bbox_pred'] |
|
num_proposals_per_img = tuple(len(p) for p in proposal_list) |
|
rois = rois.split(num_proposals_per_img, 0) |
|
cls_score = cls_score.split(num_proposals_per_img, 0) |
|
bbox_pred = bbox_pred.split(num_proposals_per_img, 0) |
|
ms_scores.append(cls_score) |
|
|
|
if i < self.num_stages - 1: |
|
bbox_label = [s[:, :-1].argmax(dim=1) for s in cls_score] |
|
rois = torch.cat([ |
|
bbox_head.regress_by_class(rois[i], bbox_label[i], |
|
bbox_pred[i], img_metas[i]) |
|
for i in range(num_imgs) |
|
]) |
|
|
|
|
|
cls_score = [ |
|
sum([score[i] for score in ms_scores]) / float(len(ms_scores)) |
|
for i in range(num_imgs) |
|
] |
|
|
|
|
|
det_bboxes = [] |
|
det_labels = [] |
|
for i in range(num_imgs): |
|
det_bbox, det_label = self.bbox_head[-1].get_bboxes( |
|
rois[i], |
|
cls_score[i], |
|
bbox_pred[i], |
|
img_shapes[i], |
|
scale_factors[i], |
|
rescale=rescale, |
|
cfg=rcnn_test_cfg) |
|
det_bboxes.append(det_bbox) |
|
det_labels.append(det_label) |
|
det_bbox_results = [ |
|
bbox2result(det_bboxes[i], det_labels[i], |
|
self.bbox_head[-1].num_classes) |
|
for i in range(num_imgs) |
|
] |
|
|
|
if self.with_mask: |
|
if all(det_bbox.shape[0] == 0 for det_bbox in det_bboxes): |
|
mask_classes = self.mask_head.num_classes |
|
det_segm_results = [[[] for _ in range(mask_classes)] |
|
for _ in range(num_imgs)] |
|
else: |
|
if rescale and not isinstance(scale_factors[0], float): |
|
scale_factors = [ |
|
torch.from_numpy(scale_factor).to(det_bboxes[0].device) |
|
for scale_factor in scale_factors |
|
] |
|
_bboxes = [ |
|
det_bboxes[i][:, :4] * |
|
scale_factors[i] if rescale else det_bboxes[i] |
|
for i in range(num_imgs) |
|
] |
|
mask_rois = bbox2roi(_bboxes) |
|
|
|
|
|
bbox_results = self._bbox_forward( |
|
-1, |
|
x, |
|
mask_rois, |
|
semantic_feat=semantic_feat, |
|
glbctx_feat=glbctx_feat) |
|
relayed_feat = bbox_results['relayed_feat'] |
|
relayed_feat = self.feat_relay_head(relayed_feat) |
|
|
|
mask_results = self._mask_forward( |
|
x, |
|
mask_rois, |
|
semantic_feat=semantic_feat, |
|
glbctx_feat=glbctx_feat, |
|
relayed_feat=relayed_feat) |
|
mask_pred = mask_results['mask_pred'] |
|
|
|
|
|
num_bbox_per_img = tuple(len(_bbox) for _bbox in _bboxes) |
|
mask_preds = mask_pred.split(num_bbox_per_img, 0) |
|
|
|
|
|
det_segm_results = [] |
|
for i in range(num_imgs): |
|
if det_bboxes[i].shape[0] == 0: |
|
det_segm_results.append( |
|
[[] for _ in range(self.mask_head.num_classes)]) |
|
else: |
|
segm_result = self.mask_head.get_seg_masks( |
|
mask_preds[i], _bboxes[i], det_labels[i], |
|
self.test_cfg, ori_shapes[i], scale_factors[i], |
|
rescale) |
|
det_segm_results.append(segm_result) |
|
|
|
|
|
if self.with_mask: |
|
return list(zip(det_bbox_results, det_segm_results)) |
|
else: |
|
return det_bbox_results |
|
|
|
def aug_test(self, img_feats, proposal_list, img_metas, rescale=False): |
|
if self.with_semantic: |
|
semantic_feats = [ |
|
self.semantic_head(feat)[1] for feat in img_feats |
|
] |
|
else: |
|
semantic_feats = [None] * len(img_metas) |
|
|
|
if self.with_glbctx: |
|
glbctx_feats = [self.glbctx_head(feat)[1] for feat in img_feats] |
|
else: |
|
glbctx_feats = [None] * len(img_metas) |
|
|
|
rcnn_test_cfg = self.test_cfg |
|
aug_bboxes = [] |
|
aug_scores = [] |
|
for x, img_meta, semantic_feat, glbctx_feat in zip( |
|
img_feats, img_metas, semantic_feats, glbctx_feats): |
|
|
|
img_shape = img_meta[0]['img_shape'] |
|
scale_factor = img_meta[0]['scale_factor'] |
|
flip = img_meta[0]['flip'] |
|
|
|
proposals = bbox_mapping(proposal_list[0][:, :4], img_shape, |
|
scale_factor, flip) |
|
|
|
ms_scores = [] |
|
|
|
rois = bbox2roi([proposals]) |
|
for i in range(self.num_stages): |
|
bbox_head = self.bbox_head[i] |
|
bbox_results = self._bbox_forward( |
|
i, |
|
x, |
|
rois, |
|
semantic_feat=semantic_feat, |
|
glbctx_feat=glbctx_feat) |
|
ms_scores.append(bbox_results['cls_score']) |
|
if i < self.num_stages - 1: |
|
bbox_label = bbox_results['cls_score'].argmax(dim=1) |
|
rois = bbox_head.regress_by_class( |
|
rois, bbox_label, bbox_results['bbox_pred'], |
|
img_meta[0]) |
|
|
|
cls_score = sum(ms_scores) / float(len(ms_scores)) |
|
bboxes, scores = self.bbox_head[-1].get_bboxes( |
|
rois, |
|
cls_score, |
|
bbox_results['bbox_pred'], |
|
img_shape, |
|
scale_factor, |
|
rescale=False, |
|
cfg=None) |
|
aug_bboxes.append(bboxes) |
|
aug_scores.append(scores) |
|
|
|
|
|
merged_bboxes, merged_scores = merge_aug_bboxes( |
|
aug_bboxes, aug_scores, img_metas, rcnn_test_cfg) |
|
det_bboxes, det_labels = multiclass_nms(merged_bboxes, merged_scores, |
|
rcnn_test_cfg.score_thr, |
|
rcnn_test_cfg.nms, |
|
rcnn_test_cfg.max_per_img) |
|
|
|
det_bbox_results = bbox2result(det_bboxes, det_labels, |
|
self.bbox_head[-1].num_classes) |
|
|
|
if self.with_mask: |
|
if det_bboxes.shape[0] == 0: |
|
det_segm_results = [[] |
|
for _ in range(self.mask_head.num_classes)] |
|
else: |
|
aug_masks = [] |
|
for x, img_meta, semantic_feat, glbctx_feat in zip( |
|
img_feats, img_metas, semantic_feats, glbctx_feats): |
|
img_shape = img_meta[0]['img_shape'] |
|
scale_factor = img_meta[0]['scale_factor'] |
|
flip = img_meta[0]['flip'] |
|
_bboxes = bbox_mapping(det_bboxes[:, :4], img_shape, |
|
scale_factor, flip) |
|
mask_rois = bbox2roi([_bboxes]) |
|
|
|
bbox_results = self._bbox_forward( |
|
-1, |
|
x, |
|
mask_rois, |
|
semantic_feat=semantic_feat, |
|
glbctx_feat=glbctx_feat) |
|
relayed_feat = bbox_results['relayed_feat'] |
|
relayed_feat = self.feat_relay_head(relayed_feat) |
|
mask_results = self._mask_forward( |
|
x, |
|
mask_rois, |
|
semantic_feat=semantic_feat, |
|
glbctx_feat=glbctx_feat, |
|
relayed_feat=relayed_feat) |
|
mask_pred = mask_results['mask_pred'] |
|
aug_masks.append(mask_pred.sigmoid().cpu().numpy()) |
|
merged_masks = merge_aug_masks(aug_masks, img_metas, |
|
self.test_cfg) |
|
ori_shape = img_metas[0][0]['ori_shape'] |
|
det_segm_results = self.mask_head.get_seg_masks( |
|
merged_masks, |
|
det_bboxes, |
|
det_labels, |
|
rcnn_test_cfg, |
|
ori_shape, |
|
scale_factor=1.0, |
|
rescale=False) |
|
return [(det_bbox_results, det_segm_results)] |
|
else: |
|
return [det_bbox_results] |
|
|