File size: 2,180 Bytes
8b7f0a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
library_name: transformers
license: apache-2.0
base_model: Helsinki-NLP/opus-mt-tc-bible-big-mul-mul
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: en_to_dzo_helsinki_nlp_m2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# en_to_dzo_helsinki_nlp_m2
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-tc-bible-big-mul-mul](https://huggingface.co/Helsinki-NLP/opus-mt-tc-bible-big-mul-mul) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3012
- Bleu: 2.8367
- Gen Len: 119.2242
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 9
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|
| 0.8419 | 1.0 | 562 | 0.5239 | 0.0 | 121.8458 |
| 0.5144 | 2.0 | 1124 | 0.4316 | 1.0161 | 118.9429 |
| 0.4296 | 3.0 | 1686 | 0.3774 | 0.8574 | 118.6066 |
| 0.3759 | 4.0 | 2248 | 0.3462 | 1.4119 | 118.6577 |
| 0.3351 | 5.0 | 2810 | 0.3250 | 2.0178 | 119.8008 |
| 0.3065 | 6.0 | 3372 | 0.3123 | 2.5655 | 118.7538 |
| 0.2839 | 7.0 | 3934 | 0.3037 | 3.0749 | 118.5455 |
| 0.2665 | 8.0 | 4496 | 0.3023 | 2.9584 | 119.3423 |
| 0.2441 | 9.0 | 5058 | 0.3012 | 2.8367 | 119.2242 |
### Framework versions
- Transformers 4.46.3
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.20.3
|