File size: 1,970 Bytes
32b581d 8e0080a 32b581d 8e0080a 32b581d 8e0080a 32b581d 8e0080a 32b581d 8e0080a 32b581d 8e0080a 32b581d 8e0080a 32b581d 8e0080a 32b581d 8e0080a 32b581d 8e0080a 32b581d 8e0080a 32b581d 8e0080a 32b581d 8e0080a 32b581d 8e0080a 32b581d 8e0080a 32b581d 8e0080a 32b581d 8e0080a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
library_name: transformers
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-large-mms-1b-dzo_M2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-mms-1b-dzo_M2
This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4519
- Wer: 0.4212
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.005
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 8
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 8.852 | 1.0 | 25 | 5.4081 | 1.0355 |
| 3.2709 | 2.0 | 50 | 2.9079 | 0.9976 |
| 2.0551 | 3.0 | 75 | 1.3991 | 0.7921 |
| 1.2379 | 4.0 | 100 | 0.9750 | 0.6851 |
| 0.9935 | 5.0 | 125 | 0.7704 | 0.5634 |
| 0.8459 | 6.0 | 150 | 0.6053 | 0.4764 |
| 0.7386 | 7.0 | 175 | 0.5166 | 0.4373 |
| 0.6474 | 8.0 | 200 | 0.4519 | 0.4212 |
### Framework versions
- Transformers 4.49.0.dev0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
|