File size: 4,411 Bytes
2e7e617
 
 
 
 
 
 
 
71d7a4f
 
 
 
 
 
 
2e7e617
 
 
 
71d7a4f
 
 
 
 
2e7e617
71d7a4f
 
 
 
 
 
2e7e617
 
71d7a4f
2e7e617
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71d7a4f
 
23992e1
71d7a4f
 
 
 
 
 
23992e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71d7a4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e7e617
71d7a4f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
---
license: apache-2.0
tags:
- merge
- mergekit
- lazymergekit
- Locutusque/StockQwen-2.5-7B
- allknowingroger/QwenSlerp8-7B
language:
- en
- zh
base_model:
- allknowingroger/QwenSlerp8-7B
- Locutusque/StockQwen-2.5-7B
library_name: transformers
---

# ZeroXClem/Qwen-2.5-Aether-SlerpFusion-7B

**Qwen-2.5-Aether-SlerpFusion-7B** is a sophisticated model merge that combines the strengths of multiple pre-trained language models using the powerful [mergekit](https://github.com/ZeroXClem/mergekit) framework. This fusion leverages spherical linear interpolation (SLERP) to seamlessly blend architectural layers, resulting in a model that benefits from enhanced performance and versatility.

## 🚀 Merged Models

This model merge incorporates the following:

- [**Locutusque/StockQwen-2.5-7B**](https://huggingface.co/Locutusque/StockQwen-2.5-7B): Serves as the foundational model, renowned for its robust language understanding and generation capabilities.
- [**allknowingroger/QwenSlerp8-7B**](https://huggingface.co/allknowingroger/QwenSlerp8-7B): Contributes advanced task-specific fine-tuning, enhancing the model's adaptability across various applications.

## 🧩 Merge Configuration

The configuration below outlines how the models are merged using **spherical linear interpolation (SLERP)**. This method ensures smooth transitions between the layers of both models, facilitating an optimal blend of their unique attributes:

```yaml
# ZeroXClem/Qwen-2.5-Aether-SlerpFusion-7B Merge Configuration
slices:
  - sources:
      - model: Locutusque/StockQwen-2.5-7B
        layer_range: [0, 28]
      - model: allknowingroger/QwenSlerp8-7B
        layer_range: [0, 28]
merge_method: slerp
base_model: Locutusque/StockQwen-2.5-7B
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16
```

### 🔑 Key Parameters

- **Self-Attention Filtering** (`self_attn`): Controls the blending extent across self-attention layers, allowing for a dynamic mix between the two source models.
- **MLP Filtering** (`mlp`): Adjusts the balance within the Multi-Layer Perceptrons, fine-tuning the model’s neural network layers for optimal performance.
- **Global Weight (`t.value`)**: Sets a general interpolation factor for all unspecified layers, ensuring an equal contribution from both models.
- **Data Type (`dtype`)**: Utilizes `bfloat16` to maintain computational efficiency while preserving high precision.

### 🗣️ Inference

Below is an example of how to load and use the model for text generation:

```python
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import torch

# Define the model name
model_name = "ZeroXClem/Qwen-2.5-Aether-SlerpFusion-7B"

# Load the tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name)

# Load the model
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.bfloat16,
    device_map="auto"
)

# Initialize the pipeline
text_generator = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    torch_dtype=torch.bfloat16,
    device_map="auto"
)

# Define the input prompt
prompt = "Explain the significance of artificial intelligence in modern healthcare."

# Generate the output
outputs = text_generator(
    prompt,
    max_new_tokens=150,
    do_sample=True,
    temperature=0.7,
    top_k=50,
    top_p=0.95
)

# Print the generated text
print(outputs[0]["generated_text"])
```

## 🎯 Use Case & Applications

**Qwen-2.5-Aether-SlerpFusion-7B** excels in scenarios that require both robust language understanding and specialized task performance. This merged model is ideal for:

- **Advanced Text Generation and Comprehension**: Crafting coherent, contextually accurate, and nuanced text for applications like content creation, summarization, and translation.
- **Domain-Specific Tasks**: Enhancing performance in specialized areas such as legal document analysis, medical information processing, and technical support.
- **Interactive AI Systems**: Powering conversational agents and chatbots that require both general language capabilities and task-specific expertise.

## 📜 License

This model is open-sourced under the **Apache-2.0 License**.

## 💡 Tags

- `merge`
- `mergekit`
- `slerp`
- `Qwen`
- `Locutusque/StockQwen-2.5-7B`
- `allknowingroger/QwenSlerp8-7B`

---