Zlovoblachko commited on
Commit
d18c4a4
·
verified ·
1 Parent(s): ae74838

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,935 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ metrics:
9
+ - accuracy
10
+ widget:
11
+ - text: It doesn't depend on hi-teck evangelism.
12
+ - text: But in the all region we see gender unequal; in 2000 boys have education often
13
+ then girls on 15 millions.
14
+ - text: There is opinion, that universities should have equal amount of male and female
15
+ students in every subject in society.
16
+ - text: A building's style may say a lot about its history.
17
+ - text: Manufactured goods by rail is the same amount as by road, Machinery transported
18
+ by road has minimal percent in second chart.
19
+ pipeline_tag: text-classification
20
+ inference: true
21
+ base_model: sentence-transformers/all-MiniLM-L6-v2
22
+ model-index:
23
+ - name: SetFit with sentence-transformers/all-MiniLM-L6-v2
24
+ results:
25
+ - task:
26
+ type: text-classification
27
+ name: Text Classification
28
+ dataset:
29
+ name: Unknown
30
+ type: unknown
31
+ split: test
32
+ metrics:
33
+ - type: accuracy
34
+ value: 0.592741935483871
35
+ name: Accuracy
36
+ ---
37
+
38
+ # SetFit with sentence-transformers/all-MiniLM-L6-v2
39
+
40
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
41
+
42
+ The model has been trained using an efficient few-shot learning technique that involves:
43
+
44
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
45
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
46
+
47
+ ## Model Details
48
+
49
+ ### Model Description
50
+ - **Model Type:** SetFit
51
+ - **Sentence Transformer body:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2)
52
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
53
+ - **Maximum Sequence Length:** 256 tokens
54
+ - **Number of Classes:** 5 classes
55
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
56
+ <!-- - **Language:** Unknown -->
57
+ <!-- - **License:** Unknown -->
58
+
59
+ ### Model Sources
60
+
61
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
62
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
63
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
64
+
65
+ ### Model Labels
66
+ | Label | Examples |
67
+ |:-----------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
68
+ | Copying expression | <ul><li>'What is needed to improve the situation with widespread using of gadjets is definite action should be encouraged and promoted by means of avoiding them.'</li><li>'Inside every of us are our passions.'</li><li>'The number of 15-59 year old people will increase for 11% but the number of 0-14 will fall and become 37%.'</li></ul> |
69
+ | Synonyms | <ul><li>'But some persons consider that the institutes should accept the equal amount of girls and boys in every faculty.'</li><li>'Nowadays problem of ecology and environment is rather acute and many people are alarmed by it.'</li><li>'The amount of people over 65 was rising between 1940 and the end of 1970s.'</li></ul> |
70
+ | Tense semantics | <ul><li>'After that the figure uncreases dramatically from 180 billions in 2009 to approximately 279 billions in 2011.'</li><li>'On the contrary, in 2014 the UK book market demonstrate minimum income, only 2,6 and 1,8 billion dollars for print book and eBook, correspondely.'</li><li>'It is not clear, what it is depends on, but after the higest point in 42% in Japan the percentage get down to 30%.'</li></ul> |
71
+ | Word form transmission | <ul><li>'A lot of people from music and cinema industry lose money due to somebody sends pirate copies to the internet.'</li><li>'The deal was worth $2 billions .'</li><li>'According to the projections numbers of people in the age of 15-60 years will show a considerable increase in 2050 by 11 per cent, such as people aged 60 and more years by 2,1 percent.'</li></ul> |
72
+ | Transliteration | <ul><li>'According to the statistic a lot of people with some horible diseases can get cvalificate help only in Japan.'</li><li>"It doesn't depend on hi-teck evangelism."</li><li>'GMO technologies are believed to be dangerous.'</li></ul> |
73
+
74
+ ## Evaluation
75
+
76
+ ### Metrics
77
+ | Label | Accuracy |
78
+ |:--------|:---------|
79
+ | **all** | 0.5927 |
80
+
81
+ ## Uses
82
+
83
+ ### Direct Use for Inference
84
+
85
+ First install the SetFit library:
86
+
87
+ ```bash
88
+ pip install setfit
89
+ ```
90
+
91
+ Then you can load this model and run inference.
92
+
93
+ ```python
94
+ from setfit import SetFitModel
95
+
96
+ # Download from the 🤗 Hub
97
+ model = SetFitModel.from_pretrained("Zlovoblachko/L1-classifier")
98
+ # Run inference
99
+ preds = model("It doesn't depend on hi-teck evangelism.")
100
+ ```
101
+
102
+ <!--
103
+ ### Downstream Use
104
+
105
+ *List how someone could finetune this model on their own dataset.*
106
+ -->
107
+
108
+ <!--
109
+ ### Out-of-Scope Use
110
+
111
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
112
+ -->
113
+
114
+ <!--
115
+ ## Bias, Risks and Limitations
116
+
117
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
118
+ -->
119
+
120
+ <!--
121
+ ### Recommendations
122
+
123
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
124
+ -->
125
+
126
+ ## Training Details
127
+
128
+ ### Training Set Metrics
129
+ | Training set | Min | Median | Max |
130
+ |:-------------|:----|:-------|:----|
131
+ | Word count | 2 | 20.788 | 54 |
132
+
133
+ | Label | Training Sample Count |
134
+ |:-----------------------|:----------------------|
135
+ | Synonyms | 91 |
136
+ | Copying expression | 55 |
137
+ | Tense semantics | 57 |
138
+ | Word form transmission | 32 |
139
+ | Transliteration | 15 |
140
+
141
+ ### Training Hyperparameters
142
+ - batch_size: (32, 32)
143
+ - num_epochs: (15, 15)
144
+ - max_steps: -1
145
+ - sampling_strategy: oversampling
146
+ - body_learning_rate: (2e-05, 1e-05)
147
+ - head_learning_rate: 0.01
148
+ - loss: CosineSimilarityLoss
149
+ - distance_metric: cosine_distance
150
+ - margin: 0.25
151
+ - end_to_end: False
152
+ - use_amp: False
153
+ - warmup_proportion: 0.1
154
+ - seed: 42
155
+ - eval_max_steps: -1
156
+ - load_best_model_at_end: False
157
+
158
+ ### Training Results
159
+ | Epoch | Step | Training Loss | Validation Loss |
160
+ |:-------:|:-----:|:-------------:|:---------------:|
161
+ | 0.0043 | 1 | 0.3438 | - |
162
+ | 0.0342 | 50 | 0.2906 | - |
163
+ | 0.0685 | 100 | 0.2761 | - |
164
+ | 0.1027 | 150 | 0.2696 | - |
165
+ | 0.1370 | 200 | 0.2381 | - |
166
+ | 0.1712 | 250 | 0.2542 | - |
167
+ | 0.2055 | 300 | 0.1781 | - |
168
+ | 0.2397 | 350 | 0.2067 | - |
169
+ | 0.2740 | 400 | 0.222 | - |
170
+ | 0.3082 | 450 | 0.2372 | - |
171
+ | 0.3425 | 500 | 0.193 | - |
172
+ | 0.3767 | 550 | 0.2399 | - |
173
+ | 0.4110 | 600 | 0.1712 | - |
174
+ | 0.4452 | 650 | 0.1697 | - |
175
+ | 0.4795 | 700 | 0.1507 | - |
176
+ | 0.5137 | 750 | 0.0947 | - |
177
+ | 0.5479 | 800 | 0.0722 | - |
178
+ | 0.5822 | 850 | 0.0975 | - |
179
+ | 0.6164 | 900 | 0.035 | - |
180
+ | 0.6507 | 950 | 0.0114 | - |
181
+ | 0.6849 | 1000 | 0.0332 | - |
182
+ | 0.7192 | 1050 | 0.0274 | - |
183
+ | 0.7534 | 1100 | 0.0126 | - |
184
+ | 0.7877 | 1150 | 0.0267 | - |
185
+ | 0.8219 | 1200 | 0.0194 | - |
186
+ | 0.8562 | 1250 | 0.0206 | - |
187
+ | 0.8904 | 1300 | 0.0228 | - |
188
+ | 0.9247 | 1350 | 0.0076 | - |
189
+ | 0.9589 | 1400 | 0.0342 | - |
190
+ | 0.9932 | 1450 | 0.0252 | - |
191
+ | 1.0274 | 1500 | 0.0164 | - |
192
+ | 1.0616 | 1550 | 0.0049 | - |
193
+ | 1.0959 | 1600 | 0.0043 | - |
194
+ | 1.1301 | 1650 | 0.0114 | - |
195
+ | 1.1644 | 1700 | 0.03 | - |
196
+ | 1.1986 | 1750 | 0.0026 | - |
197
+ | 1.2329 | 1800 | 0.0012 | - |
198
+ | 1.2671 | 1850 | 0.0073 | - |
199
+ | 1.3014 | 1900 | 0.0146 | - |
200
+ | 1.3356 | 1950 | 0.001 | - |
201
+ | 1.3699 | 2000 | 0.0088 | - |
202
+ | 1.4041 | 2050 | 0.0031 | - |
203
+ | 1.4384 | 2100 | 0.0125 | - |
204
+ | 1.4726 | 2150 | 0.0357 | - |
205
+ | 1.5068 | 2200 | 0.0186 | - |
206
+ | 1.5411 | 2250 | 0.0178 | - |
207
+ | 1.5753 | 2300 | 0.0071 | - |
208
+ | 1.6096 | 2350 | 0.0186 | - |
209
+ | 1.6438 | 2400 | 0.0077 | - |
210
+ | 1.6781 | 2450 | 0.0183 | - |
211
+ | 1.7123 | 2500 | 0.0007 | - |
212
+ | 1.7466 | 2550 | 0.0007 | - |
213
+ | 1.7808 | 2600 | 0.0052 | - |
214
+ | 1.8151 | 2650 | 0.0077 | - |
215
+ | 1.8493 | 2700 | 0.0421 | - |
216
+ | 1.8836 | 2750 | 0.0272 | - |
217
+ | 1.9178 | 2800 | 0.0144 | - |
218
+ | 1.9521 | 2850 | 0.0038 | - |
219
+ | 1.9863 | 2900 | 0.0043 | - |
220
+ | 2.0205 | 2950 | 0.0187 | - |
221
+ | 2.0548 | 3000 | 0.0075 | - |
222
+ | 2.0890 | 3050 | 0.0151 | - |
223
+ | 2.1233 | 3100 | 0.0114 | - |
224
+ | 2.1575 | 3150 | 0.0022 | - |
225
+ | 2.1918 | 3200 | 0.0007 | - |
226
+ | 2.2260 | 3250 | 0.0196 | - |
227
+ | 2.2603 | 3300 | 0.0266 | - |
228
+ | 2.2945 | 3350 | 0.0139 | - |
229
+ | 2.3288 | 3400 | 0.0169 | - |
230
+ | 2.3630 | 3450 | 0.0124 | - |
231
+ | 2.3973 | 3500 | 0.0018 | - |
232
+ | 2.4315 | 3550 | 0.0242 | - |
233
+ | 2.4658 | 3600 | 0.0402 | - |
234
+ | 2.5 | 3650 | 0.0015 | - |
235
+ | 2.5342 | 3700 | 0.0042 | - |
236
+ | 2.5685 | 3750 | 0.0437 | - |
237
+ | 2.6027 | 3800 | 0.006 | - |
238
+ | 2.6370 | 3850 | 0.0005 | - |
239
+ | 2.6712 | 3900 | 0.0118 | - |
240
+ | 2.7055 | 3950 | 0.0166 | - |
241
+ | 2.7397 | 4000 | 0.025 | - |
242
+ | 2.7740 | 4050 | 0.0167 | - |
243
+ | 2.8082 | 4100 | 0.0285 | - |
244
+ | 2.8425 | 4150 | 0.0048 | - |
245
+ | 2.8767 | 4200 | 0.0149 | - |
246
+ | 2.9110 | 4250 | 0.0078 | - |
247
+ | 2.9452 | 4300 | 0.0097 | - |
248
+ | 2.9795 | 4350 | 0.0068 | - |
249
+ | 3.0137 | 4400 | 0.0235 | - |
250
+ | 3.0479 | 4450 | 0.0004 | - |
251
+ | 3.0822 | 4500 | 0.0355 | - |
252
+ | 3.1164 | 4550 | 0.0237 | - |
253
+ | 3.1507 | 4600 | 0.0004 | - |
254
+ | 3.1849 | 4650 | 0.0003 | - |
255
+ | 3.2192 | 4700 | 0.0038 | - |
256
+ | 3.2534 | 4750 | 0.0002 | - |
257
+ | 3.2877 | 4800 | 0.0105 | - |
258
+ | 3.3219 | 4850 | 0.0055 | - |
259
+ | 3.3562 | 4900 | 0.0282 | - |
260
+ | 3.3904 | 4950 | 0.0105 | - |
261
+ | 3.4247 | 5000 | 0.0362 | - |
262
+ | 3.4589 | 5050 | 0.0004 | - |
263
+ | 3.4932 | 5100 | 0.0229 | - |
264
+ | 3.5274 | 5150 | 0.0092 | - |
265
+ | 3.5616 | 5200 | 0.033 | - |
266
+ | 3.5959 | 5250 | 0.0003 | - |
267
+ | 3.6301 | 5300 | 0.0444 | - |
268
+ | 3.6644 | 5350 | 0.0181 | - |
269
+ | 3.6986 | 5400 | 0.0254 | - |
270
+ | 3.7329 | 5450 | 0.0057 | - |
271
+ | 3.7671 | 5500 | 0.0511 | - |
272
+ | 3.8014 | 5550 | 0.0024 | - |
273
+ | 3.8356 | 5600 | 0.0195 | - |
274
+ | 3.8699 | 5650 | 0.0202 | - |
275
+ | 3.9041 | 5700 | 0.0003 | - |
276
+ | 3.9384 | 5750 | 0.0322 | - |
277
+ | 3.9726 | 5800 | 0.0123 | - |
278
+ | 4.0068 | 5850 | 0.0002 | - |
279
+ | 4.0411 | 5900 | 0.0002 | - |
280
+ | 4.0753 | 5950 | 0.008 | - |
281
+ | 4.1096 | 6000 | 0.0053 | - |
282
+ | 4.1438 | 6050 | 0.0003 | - |
283
+ | 4.1781 | 6100 | 0.0213 | - |
284
+ | 4.2123 | 6150 | 0.0046 | - |
285
+ | 4.2466 | 6200 | 0.0331 | - |
286
+ | 4.2808 | 6250 | 0.0078 | - |
287
+ | 4.3151 | 6300 | 0.0042 | - |
288
+ | 4.3493 | 6350 | 0.0234 | - |
289
+ | 4.3836 | 6400 | 0.0043 | - |
290
+ | 4.4178 | 6450 | 0.0253 | - |
291
+ | 4.4521 | 6500 | 0.0303 | - |
292
+ | 4.4863 | 6550 | 0.004 | - |
293
+ | 4.5205 | 6600 | 0.0166 | - |
294
+ | 4.5548 | 6650 | 0.0269 | - |
295
+ | 4.5890 | 6700 | 0.0079 | - |
296
+ | 4.6233 | 6750 | 0.0001 | - |
297
+ | 4.6575 | 6800 | 0.0002 | - |
298
+ | 4.6918 | 6850 | 0.0002 | - |
299
+ | 4.7260 | 6900 | 0.0199 | - |
300
+ | 4.7603 | 6950 | 0.0282 | - |
301
+ | 4.7945 | 7000 | 0.0016 | - |
302
+ | 4.8288 | 7050 | 0.0068 | - |
303
+ | 4.8630 | 7100 | 0.0054 | - |
304
+ | 4.8973 | 7150 | 0.036 | - |
305
+ | 4.9315 | 7200 | 0.0054 | - |
306
+ | 4.9658 | 7250 | 0.0174 | - |
307
+ | 5.0 | 7300 | 0.0001 | - |
308
+ | 5.0342 | 7350 | 0.0123 | - |
309
+ | 5.0685 | 7400 | 0.0218 | - |
310
+ | 5.1027 | 7450 | 0.0162 | - |
311
+ | 5.1370 | 7500 | 0.0181 | - |
312
+ | 5.1712 | 7550 | 0.0001 | - |
313
+ | 5.2055 | 7600 | 0.0201 | - |
314
+ | 5.2397 | 7650 | 0.0232 | - |
315
+ | 5.2740 | 7700 | 0.0003 | - |
316
+ | 5.3082 | 7750 | 0.0002 | - |
317
+ | 5.3425 | 7800 | 0.0094 | - |
318
+ | 5.3767 | 7850 | 0.0151 | - |
319
+ | 5.4110 | 7900 | 0.0099 | - |
320
+ | 5.4452 | 7950 | 0.01 | - |
321
+ | 5.4795 | 8000 | 0.0378 | - |
322
+ | 5.5137 | 8050 | 0.0199 | - |
323
+ | 5.5479 | 8100 | 0.0201 | - |
324
+ | 5.5822 | 8150 | 0.0242 | - |
325
+ | 5.6164 | 8200 | 0.0015 | - |
326
+ | 5.6507 | 8250 | 0.0002 | - |
327
+ | 5.6849 | 8300 | 0.0047 | - |
328
+ | 5.7192 | 8350 | 0.0002 | - |
329
+ | 5.7534 | 8400 | 0.0001 | - |
330
+ | 5.7877 | 8450 | 0.0215 | - |
331
+ | 5.8219 | 8500 | 0.0159 | - |
332
+ | 5.8562 | 8550 | 0.0001 | - |
333
+ | 5.8904 | 8600 | 0.0194 | - |
334
+ | 5.9247 | 8650 | 0.0058 | - |
335
+ | 5.9589 | 8700 | 0.0001 | - |
336
+ | 5.9932 | 8750 | 0.0164 | - |
337
+ | 6.0274 | 8800 | 0.0272 | - |
338
+ | 6.0616 | 8850 | 0.0001 | - |
339
+ | 6.0959 | 8900 | 0.0031 | - |
340
+ | 6.1301 | 8950 | 0.0154 | - |
341
+ | 6.1644 | 9000 | 0.0403 | - |
342
+ | 6.1986 | 9050 | 0.0035 | - |
343
+ | 6.2329 | 9100 | 0.0001 | - |
344
+ | 6.2671 | 9150 | 0.0061 | - |
345
+ | 6.3014 | 9200 | 0.0118 | - |
346
+ | 6.3356 | 9250 | 0.0031 | - |
347
+ | 6.3699 | 9300 | 0.0001 | - |
348
+ | 6.4041 | 9350 | 0.0098 | - |
349
+ | 6.4384 | 9400 | 0.0001 | - |
350
+ | 6.4726 | 9450 | 0.0343 | - |
351
+ | 6.5068 | 9500 | 0.017 | - |
352
+ | 6.5411 | 9550 | 0.0025 | - |
353
+ | 6.5753 | 9600 | 0.0001 | - |
354
+ | 6.6096 | 9650 | 0.0181 | - |
355
+ | 6.6438 | 9700 | 0.0191 | - |
356
+ | 6.6781 | 9750 | 0.0186 | - |
357
+ | 6.7123 | 9800 | 0.0001 | - |
358
+ | 6.7466 | 9850 | 0.0002 | - |
359
+ | 6.7808 | 9900 | 0.0001 | - |
360
+ | 6.8151 | 9950 | 0.0086 | - |
361
+ | 6.8493 | 10000 | 0.0377 | - |
362
+ | 6.8836 | 10050 | 0.0167 | - |
363
+ | 6.9178 | 10100 | 0.0034 | - |
364
+ | 6.9521 | 10150 | 0.0054 | - |
365
+ | 6.9863 | 10200 | 0.0048 | - |
366
+ | 7.0205 | 10250 | 0.0219 | - |
367
+ | 7.0548 | 10300 | 0.0001 | - |
368
+ | 7.0890 | 10350 | 0.0001 | - |
369
+ | 7.1233 | 10400 | 0.0262 | - |
370
+ | 7.1575 | 10450 | 0.0069 | - |
371
+ | 7.1918 | 10500 | 0.0001 | - |
372
+ | 7.2260 | 10550 | 0.0158 | - |
373
+ | 7.2603 | 10600 | 0.0192 | - |
374
+ | 7.2945 | 10650 | 0.0098 | - |
375
+ | 7.3288 | 10700 | 0.0001 | - |
376
+ | 7.3630 | 10750 | 0.0002 | - |
377
+ | 7.3973 | 10800 | 0.0021 | - |
378
+ | 7.4315 | 10850 | 0.0252 | - |
379
+ | 7.4658 | 10900 | 0.0383 | - |
380
+ | 7.5 | 10950 | 0.0001 | - |
381
+ | 7.5342 | 11000 | 0.0001 | - |
382
+ | 7.5685 | 11050 | 0.0491 | - |
383
+ | 7.6027 | 11100 | 0.0076 | - |
384
+ | 7.6370 | 11150 | 0.0089 | - |
385
+ | 7.6712 | 11200 | 0.0162 | - |
386
+ | 7.7055 | 11250 | 0.0163 | - |
387
+ | 7.7397 | 11300 | 0.0188 | - |
388
+ | 7.7740 | 11350 | 0.0141 | - |
389
+ | 7.8082 | 11400 | 0.0277 | - |
390
+ | 7.8425 | 11450 | 0.0001 | - |
391
+ | 7.8767 | 11500 | 0.0001 | - |
392
+ | 7.9110 | 11550 | 0.0055 | - |
393
+ | 7.9452 | 11600 | 0.0029 | - |
394
+ | 7.9795 | 11650 | 0.0001 | - |
395
+ | 8.0137 | 11700 | 0.0186 | - |
396
+ | 8.0479 | 11750 | 0.0037 | - |
397
+ | 8.0822 | 11800 | 0.0205 | - |
398
+ | 8.1164 | 11850 | 0.0217 | - |
399
+ | 8.1507 | 11900 | 0.0036 | - |
400
+ | 8.1849 | 11950 | 0.0039 | - |
401
+ | 8.2192 | 12000 | 0.0001 | - |
402
+ | 8.2534 | 12050 | 0.0055 | - |
403
+ | 8.2877 | 12100 | 0.0027 | - |
404
+ | 8.3219 | 12150 | 0.0029 | - |
405
+ | 8.3562 | 12200 | 0.0279 | - |
406
+ | 8.3904 | 12250 | 0.0139 | - |
407
+ | 8.4247 | 12300 | 0.04 | - |
408
+ | 8.4589 | 12350 | 0.003 | - |
409
+ | 8.4932 | 12400 | 0.0161 | - |
410
+ | 8.5274 | 12450 | 0.0001 | - |
411
+ | 8.5616 | 12500 | 0.035 | - |
412
+ | 8.5959 | 12550 | 0.0021 | - |
413
+ | 8.6301 | 12600 | 0.0355 | - |
414
+ | 8.6644 | 12650 | 0.0139 | - |
415
+ | 8.6986 | 12700 | 0.0183 | - |
416
+ | 8.7329 | 12750 | 0.0041 | - |
417
+ | 8.7671 | 12800 | 0.0354 | - |
418
+ | 8.8014 | 12850 | 0.0 | - |
419
+ | 8.8356 | 12900 | 0.0197 | - |
420
+ | 8.8699 | 12950 | 0.0189 | - |
421
+ | 8.9041 | 13000 | 0.0063 | - |
422
+ | 8.9384 | 13050 | 0.0309 | - |
423
+ | 8.9726 | 13100 | 0.0029 | - |
424
+ | 9.0068 | 13150 | 0.0027 | - |
425
+ | 9.0411 | 13200 | 0.0018 | - |
426
+ | 9.0753 | 13250 | 0.0104 | - |
427
+ | 9.1096 | 13300 | 0.0057 | - |
428
+ | 9.1438 | 13350 | 0.0051 | - |
429
+ | 9.1781 | 13400 | 0.0172 | - |
430
+ | 9.2123 | 13450 | 0.0001 | - |
431
+ | 9.2466 | 13500 | 0.0347 | - |
432
+ | 9.2808 | 13550 | 0.0024 | - |
433
+ | 9.3151 | 13600 | 0.0147 | - |
434
+ | 9.3493 | 13650 | 0.0218 | - |
435
+ | 9.3836 | 13700 | 0.0028 | - |
436
+ | 9.4178 | 13750 | 0.0205 | - |
437
+ | 9.4521 | 13800 | 0.0215 | - |
438
+ | 9.4863 | 13850 | 0.0001 | - |
439
+ | 9.5205 | 13900 | 0.0157 | - |
440
+ | 9.5548 | 13950 | 0.0227 | - |
441
+ | 9.5890 | 14000 | 0.0001 | - |
442
+ | 9.6233 | 14050 | 0.0048 | - |
443
+ | 9.6575 | 14100 | 0.0106 | - |
444
+ | 9.6918 | 14150 | 0.0077 | - |
445
+ | 9.7260 | 14200 | 0.0225 | - |
446
+ | 9.7603 | 14250 | 0.0173 | - |
447
+ | 9.7945 | 14300 | 0.0028 | - |
448
+ | 9.8288 | 14350 | 0.0022 | - |
449
+ | 9.8630 | 14400 | 0.003 | - |
450
+ | 9.8973 | 14450 | 0.0355 | - |
451
+ | 9.9315 | 14500 | 0.0001 | - |
452
+ | 9.9658 | 14550 | 0.0187 | - |
453
+ | 10.0 | 14600 | 0.0001 | - |
454
+ | 0.0007 | 1 | 0.0055 | - |
455
+ | 0.0342 | 50 | 0.0127 | - |
456
+ | 0.0685 | 100 | 0.0206 | - |
457
+ | 0.1027 | 150 | 0.0195 | - |
458
+ | 0.1370 | 200 | 0.0238 | - |
459
+ | 0.1712 | 250 | 0.0029 | - |
460
+ | 0.2055 | 300 | 0.0204 | - |
461
+ | 0.2397 | 350 | 0.0174 | - |
462
+ | 0.2740 | 400 | 0.0001 | - |
463
+ | 0.3082 | 450 | 0.0023 | - |
464
+ | 0.3425 | 500 | 0.0001 | - |
465
+ | 0.3767 | 550 | 0.0254 | - |
466
+ | 0.4110 | 600 | 0.0029 | - |
467
+ | 0.4452 | 650 | 0.0082 | - |
468
+ | 0.4795 | 700 | 0.0411 | - |
469
+ | 0.5137 | 750 | 0.0159 | - |
470
+ | 0.5479 | 800 | 0.0207 | - |
471
+ | 0.5822 | 850 | 0.0173 | - |
472
+ | 0.6164 | 900 | 0.0001 | - |
473
+ | 0.6507 | 950 | 0.0018 | - |
474
+ | 0.6849 | 1000 | 0.0059 | - |
475
+ | 0.7192 | 1050 | 0.0014 | - |
476
+ | 0.7534 | 1100 | 0.0022 | - |
477
+ | 0.7877 | 1150 | 0.0187 | - |
478
+ | 0.8219 | 1200 | 0.0158 | - |
479
+ | 0.8562 | 1250 | 0.0025 | - |
480
+ | 0.8904 | 1300 | 0.0113 | - |
481
+ | 0.9247 | 1350 | 0.0007 | - |
482
+ | 0.9589 | 1400 | 0.004 | - |
483
+ | 0.9932 | 1450 | 0.0216 | - |
484
+ | 1.0274 | 1500 | 0.0213 | - |
485
+ | 1.0616 | 1550 | 0.0044 | - |
486
+ | 1.0959 | 1600 | 0.0025 | - |
487
+ | 1.1301 | 1650 | 0.0154 | - |
488
+ | 1.1644 | 1700 | 0.038 | - |
489
+ | 1.1986 | 1750 | 0.0001 | - |
490
+ | 1.2329 | 1800 | 0.0004 | - |
491
+ | 1.2671 | 1850 | 0.0065 | - |
492
+ | 1.3014 | 1900 | 0.0087 | - |
493
+ | 1.3356 | 1950 | 0.0001 | - |
494
+ | 1.3699 | 2000 | 0.0039 | - |
495
+ | 1.4041 | 2050 | 0.0005 | - |
496
+ | 1.4384 | 2100 | 0.0087 | - |
497
+ | 1.4726 | 2150 | 0.0369 | - |
498
+ | 1.5068 | 2200 | 0.0157 | - |
499
+ | 1.5411 | 2250 | 0.0094 | - |
500
+ | 1.5753 | 2300 | 0.0042 | - |
501
+ | 1.6096 | 2350 | 0.018 | - |
502
+ | 1.6438 | 2400 | 0.014 | - |
503
+ | 1.6781 | 2450 | 0.0161 | - |
504
+ | 1.7123 | 2500 | 0.0011 | - |
505
+ | 1.7466 | 2550 | 0.0001 | - |
506
+ | 1.7808 | 2600 | 0.004 | - |
507
+ | 1.8151 | 2650 | 0.0048 | - |
508
+ | 1.8493 | 2700 | 0.0403 | - |
509
+ | 1.8836 | 2750 | 0.0254 | - |
510
+ | 1.9178 | 2800 | 0.0124 | - |
511
+ | 1.9521 | 2850 | 0.0028 | - |
512
+ | 1.9863 | 2900 | 0.0026 | - |
513
+ | 2.0205 | 2950 | 0.0171 | - |
514
+ | 2.0548 | 3000 | 0.0049 | - |
515
+ | 2.0890 | 3050 | 0.0092 | - |
516
+ | 2.1233 | 3100 | 0.0134 | - |
517
+ | 2.1575 | 3150 | 0.0021 | - |
518
+ | 2.1918 | 3200 | 0.0001 | - |
519
+ | 2.2260 | 3250 | 0.0153 | - |
520
+ | 2.2603 | 3300 | 0.0253 | - |
521
+ | 2.2945 | 3350 | 0.0095 | - |
522
+ | 2.3288 | 3400 | 0.0144 | - |
523
+ | 2.3630 | 3450 | 0.0064 | - |
524
+ | 2.3973 | 3500 | 0.0013 | - |
525
+ | 2.4315 | 3550 | 0.0216 | - |
526
+ | 2.4658 | 3600 | 0.0387 | - |
527
+ | 2.5 | 3650 | 0.0018 | - |
528
+ | 2.5342 | 3700 | 0.0034 | - |
529
+ | 2.5685 | 3750 | 0.0428 | - |
530
+ | 2.6027 | 3800 | 0.0055 | - |
531
+ | 2.6370 | 3850 | 0.0001 | - |
532
+ | 2.6712 | 3900 | 0.0154 | - |
533
+ | 2.7055 | 3950 | 0.0176 | - |
534
+ | 2.7397 | 4000 | 0.0213 | - |
535
+ | 2.7740 | 4050 | 0.016 | - |
536
+ | 2.8082 | 4100 | 0.0293 | - |
537
+ | 2.8425 | 4150 | 0.0034 | - |
538
+ | 2.8767 | 4200 | 0.0119 | - |
539
+ | 2.9110 | 4250 | 0.0061 | - |
540
+ | 2.9452 | 4300 | 0.0068 | - |
541
+ | 2.9795 | 4350 | 0.006 | - |
542
+ | 3.0137 | 4400 | 0.0211 | - |
543
+ | 3.0479 | 4450 | 0.0001 | - |
544
+ | 3.0822 | 4500 | 0.0303 | - |
545
+ | 3.1164 | 4550 | 0.0225 | - |
546
+ | 3.1507 | 4600 | 0.0001 | - |
547
+ | 3.1849 | 4650 | 0.0002 | - |
548
+ | 3.2192 | 4700 | 0.0031 | - |
549
+ | 3.2534 | 4750 | 0.0001 | - |
550
+ | 3.2877 | 4800 | 0.0103 | - |
551
+ | 3.3219 | 4850 | 0.0055 | - |
552
+ | 3.3562 | 4900 | 0.0297 | - |
553
+ | 3.3904 | 4950 | 0.0121 | - |
554
+ | 3.4247 | 5000 | 0.0348 | - |
555
+ | 3.4589 | 5050 | 0.0003 | - |
556
+ | 3.4932 | 5100 | 0.0212 | - |
557
+ | 3.5274 | 5150 | 0.0077 | - |
558
+ | 3.5616 | 5200 | 0.0339 | - |
559
+ | 3.5959 | 5250 | 0.0001 | - |
560
+ | 3.6301 | 5300 | 0.0444 | - |
561
+ | 3.6644 | 5350 | 0.0167 | - |
562
+ | 3.6986 | 5400 | 0.0245 | - |
563
+ | 3.7329 | 5450 | 0.005 | - |
564
+ | 3.7671 | 5500 | 0.047 | - |
565
+ | 3.8014 | 5550 | 0.0021 | - |
566
+ | 3.8356 | 5600 | 0.019 | - |
567
+ | 3.8699 | 5650 | 0.0187 | - |
568
+ | 3.9041 | 5700 | 0.0001 | - |
569
+ | 3.9384 | 5750 | 0.0328 | - |
570
+ | 3.9726 | 5800 | 0.0097 | - |
571
+ | 4.0068 | 5850 | 0.0001 | - |
572
+ | 4.0411 | 5900 | 0.0001 | - |
573
+ | 4.0753 | 5950 | 0.0078 | - |
574
+ | 4.1096 | 6000 | 0.0057 | - |
575
+ | 4.1438 | 6050 | 0.0002 | - |
576
+ | 4.1781 | 6100 | 0.0218 | - |
577
+ | 4.2123 | 6150 | 0.0038 | - |
578
+ | 4.2466 | 6200 | 0.0337 | - |
579
+ | 4.2808 | 6250 | 0.0065 | - |
580
+ | 4.3151 | 6300 | 0.0033 | - |
581
+ | 4.3493 | 6350 | 0.0228 | - |
582
+ | 4.3836 | 6400 | 0.0033 | - |
583
+ | 4.4178 | 6450 | 0.0244 | - |
584
+ | 4.4521 | 6500 | 0.027 | - |
585
+ | 4.4863 | 6550 | 0.0027 | - |
586
+ | 4.5205 | 6600 | 0.0153 | - |
587
+ | 4.5548 | 6650 | 0.0241 | - |
588
+ | 4.5890 | 6700 | 0.0071 | - |
589
+ | 4.6233 | 6750 | 0.0001 | - |
590
+ | 4.6575 | 6800 | 0.0 | - |
591
+ | 4.6918 | 6850 | 0.0001 | - |
592
+ | 4.7260 | 6900 | 0.0203 | - |
593
+ | 4.7603 | 6950 | 0.0273 | - |
594
+ | 4.7945 | 7000 | 0.0017 | - |
595
+ | 4.8288 | 7050 | 0.0062 | - |
596
+ | 4.8630 | 7100 | 0.0043 | - |
597
+ | 4.8973 | 7150 | 0.0346 | - |
598
+ | 4.9315 | 7200 | 0.005 | - |
599
+ | 4.9658 | 7250 | 0.0182 | - |
600
+ | 5.0 | 7300 | 0.0001 | - |
601
+ | 5.0342 | 7350 | 0.0108 | - |
602
+ | 5.0685 | 7400 | 0.0218 | - |
603
+ | 5.1027 | 7450 | 0.0163 | - |
604
+ | 5.1370 | 7500 | 0.0195 | - |
605
+ | 5.1712 | 7550 | 0.0001 | - |
606
+ | 5.2055 | 7600 | 0.0195 | - |
607
+ | 5.2397 | 7650 | 0.0222 | - |
608
+ | 5.2740 | 7700 | 0.0002 | - |
609
+ | 5.3082 | 7750 | 0.0001 | - |
610
+ | 5.3425 | 7800 | 0.0078 | - |
611
+ | 5.3767 | 7850 | 0.0158 | - |
612
+ | 5.4110 | 7900 | 0.0081 | - |
613
+ | 5.4452 | 7950 | 0.0087 | - |
614
+ | 5.4795 | 8000 | 0.0372 | - |
615
+ | 5.5137 | 8050 | 0.019 | - |
616
+ | 5.5479 | 8100 | 0.0188 | - |
617
+ | 5.5822 | 8150 | 0.0238 | - |
618
+ | 5.6164 | 8200 | 0.0018 | - |
619
+ | 5.6507 | 8250 | 0.0001 | - |
620
+ | 5.6849 | 8300 | 0.0046 | - |
621
+ | 5.7192 | 8350 | 0.0001 | - |
622
+ | 5.7534 | 8400 | 0.0001 | - |
623
+ | 5.7877 | 8450 | 0.0216 | - |
624
+ | 5.8219 | 8500 | 0.0164 | - |
625
+ | 5.8562 | 8550 | 0.0 | - |
626
+ | 5.8904 | 8600 | 0.018 | - |
627
+ | 5.9247 | 8650 | 0.0059 | - |
628
+ | 5.9589 | 8700 | 0.0001 | - |
629
+ | 5.9932 | 8750 | 0.0168 | - |
630
+ | 6.0274 | 8800 | 0.0259 | - |
631
+ | 6.0616 | 8850 | 0.0001 | - |
632
+ | 6.0959 | 8900 | 0.0029 | - |
633
+ | 6.1301 | 8950 | 0.0159 | - |
634
+ | 6.1644 | 9000 | 0.041 | - |
635
+ | 6.1986 | 9050 | 0.0035 | - |
636
+ | 6.2329 | 9100 | 0.0001 | - |
637
+ | 6.2671 | 9150 | 0.005 | - |
638
+ | 6.3014 | 9200 | 0.0101 | - |
639
+ | 6.3356 | 9250 | 0.0027 | - |
640
+ | 6.3699 | 9300 | 0.0 | - |
641
+ | 6.4041 | 9350 | 0.0094 | - |
642
+ | 6.4384 | 9400 | 0.0001 | - |
643
+ | 6.4726 | 9450 | 0.0335 | - |
644
+ | 6.5068 | 9500 | 0.0168 | - |
645
+ | 6.5411 | 9550 | 0.0025 | - |
646
+ | 6.5753 | 9600 | 0.0001 | - |
647
+ | 6.6096 | 9650 | 0.0185 | - |
648
+ | 6.6438 | 9700 | 0.0188 | - |
649
+ | 6.6781 | 9750 | 0.0187 | - |
650
+ | 6.7123 | 9800 | 0.0001 | - |
651
+ | 6.7466 | 9850 | 0.0002 | - |
652
+ | 6.7808 | 9900 | 0.0001 | - |
653
+ | 6.8151 | 9950 | 0.0087 | - |
654
+ | 6.8493 | 10000 | 0.0371 | - |
655
+ | 6.8836 | 10050 | 0.0172 | - |
656
+ | 6.9178 | 10100 | 0.0028 | - |
657
+ | 6.9521 | 10150 | 0.0055 | - |
658
+ | 6.9863 | 10200 | 0.0043 | - |
659
+ | 7.0205 | 10250 | 0.0219 | - |
660
+ | 7.0548 | 10300 | 0.0 | - |
661
+ | 7.0890 | 10350 | 0.0001 | - |
662
+ | 7.1233 | 10400 | 0.026 | - |
663
+ | 7.1575 | 10450 | 0.0067 | - |
664
+ | 7.1918 | 10500 | 0.0001 | - |
665
+ | 7.2260 | 10550 | 0.0162 | - |
666
+ | 7.2603 | 10600 | 0.019 | - |
667
+ | 7.2945 | 10650 | 0.0093 | - |
668
+ | 7.3288 | 10700 | 0.0001 | - |
669
+ | 7.3630 | 10750 | 0.0002 | - |
670
+ | 7.3973 | 10800 | 0.002 | - |
671
+ | 7.4315 | 10850 | 0.0247 | - |
672
+ | 7.4658 | 10900 | 0.0394 | - |
673
+ | 7.5 | 10950 | 0.0001 | - |
674
+ | 7.5342 | 11000 | 0.0001 | - |
675
+ | 7.5685 | 11050 | 0.0503 | - |
676
+ | 7.6027 | 11100 | 0.0066 | - |
677
+ | 7.6370 | 11150 | 0.0087 | - |
678
+ | 7.6712 | 11200 | 0.0165 | - |
679
+ | 7.7055 | 11250 | 0.0164 | - |
680
+ | 7.7397 | 11300 | 0.019 | - |
681
+ | 7.7740 | 11350 | 0.0143 | - |
682
+ | 7.8082 | 11400 | 0.0282 | - |
683
+ | 7.8425 | 11450 | 0.0001 | - |
684
+ | 7.8767 | 11500 | 0.0 | - |
685
+ | 7.9110 | 11550 | 0.0049 | - |
686
+ | 7.9452 | 11600 | 0.0028 | - |
687
+ | 7.9795 | 11650 | 0.0001 | - |
688
+ | 8.0137 | 11700 | 0.0184 | - |
689
+ | 8.0479 | 11750 | 0.0038 | - |
690
+ | 8.0822 | 11800 | 0.0211 | - |
691
+ | 8.1164 | 11850 | 0.0217 | - |
692
+ | 8.1507 | 11900 | 0.0035 | - |
693
+ | 8.1849 | 11950 | 0.0039 | - |
694
+ | 8.2192 | 12000 | 0.0 | - |
695
+ | 8.2534 | 12050 | 0.0055 | - |
696
+ | 8.2877 | 12100 | 0.0027 | - |
697
+ | 8.3219 | 12150 | 0.0031 | - |
698
+ | 8.3562 | 12200 | 0.0271 | - |
699
+ | 8.3904 | 12250 | 0.0138 | - |
700
+ | 8.4247 | 12300 | 0.0413 | - |
701
+ | 8.4589 | 12350 | 0.0029 | - |
702
+ | 8.4932 | 12400 | 0.0161 | - |
703
+ | 8.5274 | 12450 | 0.0 | - |
704
+ | 8.5616 | 12500 | 0.0352 | - |
705
+ | 8.5959 | 12550 | 0.0018 | - |
706
+ | 8.6301 | 12600 | 0.0363 | - |
707
+ | 8.6644 | 12650 | 0.0136 | - |
708
+ | 8.6986 | 12700 | 0.0175 | - |
709
+ | 8.7329 | 12750 | 0.0045 | - |
710
+ | 8.7671 | 12800 | 0.036 | - |
711
+ | 8.8014 | 12850 | 0.0001 | - |
712
+ | 8.8356 | 12900 | 0.0188 | - |
713
+ | 8.8699 | 12950 | 0.0192 | - |
714
+ | 8.9041 | 13000 | 0.0059 | - |
715
+ | 8.9384 | 13050 | 0.0298 | - |
716
+ | 8.9726 | 13100 | 0.0026 | - |
717
+ | 9.0068 | 13150 | 0.0027 | - |
718
+ | 9.0411 | 13200 | 0.0017 | - |
719
+ | 9.0753 | 13250 | 0.0103 | - |
720
+ | 9.1096 | 13300 | 0.0061 | - |
721
+ | 9.1438 | 13350 | 0.0043 | - |
722
+ | 9.1781 | 13400 | 0.0189 | - |
723
+ | 9.2123 | 13450 | 0.0001 | - |
724
+ | 9.2466 | 13500 | 0.0363 | - |
725
+ | 9.2808 | 13550 | 0.0019 | - |
726
+ | 9.3151 | 13600 | 0.0141 | - |
727
+ | 9.3493 | 13650 | 0.0213 | - |
728
+ | 9.3836 | 13700 | 0.0029 | - |
729
+ | 9.4178 | 13750 | 0.0217 | - |
730
+ | 9.4521 | 13800 | 0.0218 | - |
731
+ | 9.4863 | 13850 | 0.0001 | - |
732
+ | 9.5205 | 13900 | 0.014 | - |
733
+ | 9.5548 | 13950 | 0.0213 | - |
734
+ | 9.5890 | 14000 | 0.0 | - |
735
+ | 9.6233 | 14050 | 0.004 | - |
736
+ | 9.6575 | 14100 | 0.0112 | - |
737
+ | 9.6918 | 14150 | 0.0077 | - |
738
+ | 9.7260 | 14200 | 0.0237 | - |
739
+ | 9.7603 | 14250 | 0.0202 | - |
740
+ | 9.7945 | 14300 | 0.003 | - |
741
+ | 9.8288 | 14350 | 0.002 | - |
742
+ | 9.8630 | 14400 | 0.0028 | - |
743
+ | 9.8973 | 14450 | 0.0398 | - |
744
+ | 9.9315 | 14500 | 0.0001 | - |
745
+ | 9.9658 | 14550 | 0.0185 | - |
746
+ | 10.0 | 14600 | 0.0001 | - |
747
+ | 10.0342 | 14650 | 0.0102 | - |
748
+ | 10.0685 | 14700 | 0.0164 | - |
749
+ | 10.1027 | 14750 | 0.0161 | - |
750
+ | 10.1370 | 14800 | 0.0221 | - |
751
+ | 10.1712 | 14850 | 0.0016 | - |
752
+ | 10.2055 | 14900 | 0.0151 | - |
753
+ | 10.2397 | 14950 | 0.0215 | - |
754
+ | 10.2740 | 15000 | 0.0021 | - |
755
+ | 10.3082 | 15050 | 0.0075 | - |
756
+ | 10.3425 | 15100 | 0.0001 | - |
757
+ | 10.3767 | 15150 | 0.0211 | - |
758
+ | 10.4110 | 15200 | 0.0022 | - |
759
+ | 10.4452 | 15250 | 0.0001 | - |
760
+ | 10.4795 | 15300 | 0.0348 | - |
761
+ | 10.5137 | 15350 | 0.0211 | - |
762
+ | 10.5479 | 15400 | 0.0193 | - |
763
+ | 10.5822 | 15450 | 0.0203 | - |
764
+ | 10.6164 | 15500 | 0.0001 | - |
765
+ | 10.6507 | 15550 | 0.0 | - |
766
+ | 10.6849 | 15600 | 0.0028 | - |
767
+ | 10.7192 | 15650 | 0.0025 | - |
768
+ | 10.7534 | 15700 | 0.003 | - |
769
+ | 10.7877 | 15750 | 0.0199 | - |
770
+ | 10.8219 | 15800 | 0.0238 | - |
771
+ | 10.8562 | 15850 | 0.0024 | - |
772
+ | 10.8904 | 15900 | 0.0149 | - |
773
+ | 10.9247 | 15950 | 0.0019 | - |
774
+ | 10.9589 | 16000 | 0.0001 | - |
775
+ | 10.9932 | 16050 | 0.0206 | - |
776
+ | 11.0274 | 16100 | 0.0187 | - |
777
+ | 11.0616 | 16150 | 0.0025 | - |
778
+ | 11.0959 | 16200 | 0.0001 | - |
779
+ | 11.1301 | 16250 | 0.0185 | - |
780
+ | 11.1644 | 16300 | 0.0476 | - |
781
+ | 11.1986 | 16350 | 0.0027 | - |
782
+ | 11.2329 | 16400 | 0.0064 | - |
783
+ | 11.2671 | 16450 | 0.0026 | - |
784
+ | 11.3014 | 16500 | 0.0055 | - |
785
+ | 11.3356 | 16550 | 0.0024 | - |
786
+ | 11.3699 | 16600 | 0.0059 | - |
787
+ | 11.4041 | 16650 | 0.0 | - |
788
+ | 11.4384 | 16700 | 0.0 | - |
789
+ | 11.4726 | 16750 | 0.0333 | - |
790
+ | 11.5068 | 16800 | 0.0231 | - |
791
+ | 11.5411 | 16850 | 0.0084 | - |
792
+ | 11.5753 | 16900 | 0.0001 | - |
793
+ | 11.6096 | 16950 | 0.0173 | - |
794
+ | 11.6438 | 17000 | 0.0207 | - |
795
+ | 11.6781 | 17050 | 0.0162 | - |
796
+ | 11.7123 | 17100 | 0.0071 | - |
797
+ | 11.7466 | 17150 | 0.0049 | - |
798
+ | 11.7808 | 17200 | 0.0025 | - |
799
+ | 11.8151 | 17250 | 0.011 | - |
800
+ | 11.8493 | 17300 | 0.035 | - |
801
+ | 11.8836 | 17350 | 0.0168 | - |
802
+ | 11.9178 | 17400 | 0.0085 | - |
803
+ | 11.9521 | 17450 | 0.0028 | - |
804
+ | 11.9863 | 17500 | 0.0 | - |
805
+ | 12.0205 | 17550 | 0.0239 | - |
806
+ | 12.0548 | 17600 | 0.0026 | - |
807
+ | 12.0890 | 17650 | 0.008 | - |
808
+ | 12.1233 | 17700 | 0.0165 | - |
809
+ | 12.1575 | 17750 | 0.0027 | - |
810
+ | 12.1918 | 17800 | 0.0069 | - |
811
+ | 12.2260 | 17850 | 0.0215 | - |
812
+ | 12.2603 | 17900 | 0.0236 | - |
813
+ | 12.2945 | 17950 | 0.0001 | - |
814
+ | 12.3288 | 18000 | 0.0001 | - |
815
+ | 12.3630 | 18050 | 0.0025 | - |
816
+ | 12.3973 | 18100 | 0.0026 | - |
817
+ | 12.4315 | 18150 | 0.0164 | - |
818
+ | 12.4658 | 18200 | 0.035 | - |
819
+ | 12.5 | 18250 | 0.0032 | - |
820
+ | 12.5342 | 18300 | 0.0 | - |
821
+ | 12.5685 | 18350 | 0.0343 | - |
822
+ | 12.6027 | 18400 | 0.0024 | - |
823
+ | 12.6370 | 18450 | 0.0025 | - |
824
+ | 12.6712 | 18500 | 0.0202 | - |
825
+ | 12.7055 | 18550 | 0.0192 | - |
826
+ | 12.7397 | 18600 | 0.017 | - |
827
+ | 12.7740 | 18650 | 0.02 | - |
828
+ | 12.8082 | 18700 | 0.0321 | - |
829
+ | 12.8425 | 18750 | 0.0001 | - |
830
+ | 12.8767 | 18800 | 0.0023 | - |
831
+ | 12.9110 | 18850 | 0.0028 | - |
832
+ | 12.9452 | 18900 | 0.0 | - |
833
+ | 12.9795 | 18950 | 0.0 | - |
834
+ | 13.0137 | 19000 | 0.0267 | - |
835
+ | 13.0479 | 19050 | 0.0056 | - |
836
+ | 13.0822 | 19100 | 0.0219 | - |
837
+ | 13.1164 | 19150 | 0.0184 | - |
838
+ | 13.1507 | 19200 | 0.0028 | - |
839
+ | 13.1849 | 19250 | 0.0 | - |
840
+ | 13.2192 | 19300 | 0.005 | - |
841
+ | 13.2534 | 19350 | 0.0056 | - |
842
+ | 13.2877 | 19400 | 0.0033 | - |
843
+ | 13.3219 | 19450 | 0.0 | - |
844
+ | 13.3562 | 19500 | 0.034 | - |
845
+ | 13.3904 | 19550 | 0.0173 | - |
846
+ | 13.4247 | 19600 | 0.033 | - |
847
+ | 13.4589 | 19650 | 0.0025 | - |
848
+ | 13.4932 | 19700 | 0.0279 | - |
849
+ | 13.5274 | 19750 | 0.0052 | - |
850
+ | 13.5616 | 19800 | 0.0351 | - |
851
+ | 13.5959 | 19850 | 0.0 | - |
852
+ | 13.6301 | 19900 | 0.035 | - |
853
+ | 13.6644 | 19950 | 0.0069 | - |
854
+ | 13.6986 | 20000 | 0.0227 | - |
855
+ | 13.7329 | 20050 | 0.0 | - |
856
+ | 13.7671 | 20100 | 0.0347 | - |
857
+ | 13.8014 | 20150 | 0.0 | - |
858
+ | 13.8356 | 20200 | 0.0217 | - |
859
+ | 13.8699 | 20250 | 0.02 | - |
860
+ | 13.9041 | 20300 | 0.0 | - |
861
+ | 13.9384 | 20350 | 0.0393 | - |
862
+ | 13.9726 | 20400 | 0.0053 | - |
863
+ | 14.0068 | 20450 | 0.0026 | - |
864
+ | 14.0411 | 20500 | 0.0025 | - |
865
+ | 14.0753 | 20550 | 0.0049 | - |
866
+ | 14.1096 | 20600 | 0.0 | - |
867
+ | 14.1438 | 20650 | 0.0 | - |
868
+ | 14.1781 | 20700 | 0.0184 | - |
869
+ | 14.2123 | 20750 | 0.0029 | - |
870
+ | 14.2466 | 20800 | 0.0313 | - |
871
+ | 14.2808 | 20850 | 0.0 | - |
872
+ | 14.3151 | 20900 | 0.0051 | - |
873
+ | 14.3493 | 20950 | 0.0157 | - |
874
+ | 14.3836 | 21000 | 0.0059 | - |
875
+ | 14.4178 | 21050 | 0.0182 | - |
876
+ | 14.4521 | 21100 | 0.0242 | - |
877
+ | 14.4863 | 21150 | 0.0024 | - |
878
+ | 14.5205 | 21200 | 0.026 | - |
879
+ | 14.5548 | 21250 | 0.0211 | - |
880
+ | 14.5890 | 21300 | 0.0053 | - |
881
+ | 14.6233 | 21350 | 0.0 | - |
882
+ | 14.6575 | 21400 | 0.0 | - |
883
+ | 14.6918 | 21450 | 0.0034 | - |
884
+ | 14.7260 | 21500 | 0.0239 | - |
885
+ | 14.7603 | 21550 | 0.0209 | - |
886
+ | 14.7945 | 21600 | 0.0028 | - |
887
+ | 14.8288 | 21650 | 0.0 | - |
888
+ | 14.8630 | 21700 | 0.0022 | - |
889
+ | 14.8973 | 21750 | 0.0364 | - |
890
+ | 14.9315 | 21800 | 0.0052 | - |
891
+ | 14.9658 | 21850 | 0.0239 | - |
892
+ | 15.0 | 21900 | 0.0 | - |
893
+
894
+ ### Framework Versions
895
+ - Python: 3.10.12
896
+ - SetFit: 1.1.0.dev0
897
+ - Sentence Transformers: 2.6.1
898
+ - Transformers: 4.38.2
899
+ - PyTorch: 2.2.1+cu121
900
+ - Datasets: 2.18.0
901
+ - Tokenizers: 0.15.2
902
+
903
+ ## Citation
904
+
905
+ ### BibTeX
906
+ ```bibtex
907
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
908
+ doi = {10.48550/ARXIV.2209.11055},
909
+ url = {https://arxiv.org/abs/2209.11055},
910
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
911
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
912
+ title = {Efficient Few-Shot Learning Without Prompts},
913
+ publisher = {arXiv},
914
+ year = {2022},
915
+ copyright = {Creative Commons Attribution 4.0 International}
916
+ }
917
+ ```
918
+
919
+ <!--
920
+ ## Glossary
921
+
922
+ *Clearly define terms in order to be accessible across audiences.*
923
+ -->
924
+
925
+ <!--
926
+ ## Model Card Authors
927
+
928
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
929
+ -->
930
+
931
+ <!--
932
+ ## Model Card Contact
933
+
934
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
935
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-MiniLM-L6-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.38.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.6.1",
5
+ "pytorch": "1.8.1"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null
9
+ }
config_setfit.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": [
4
+ "Synonyms",
5
+ "Copying expression",
6
+ "Tense semantics",
7
+ "Word form transmission",
8
+ "Transliteration"
9
+ ]
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:26b0fddd74b0899b390a598765c73700fdfe8d619ad317d843954fc86841c8f2
3
+ size 90864192
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5f43af2cb80d4fbc9d1a36f593e819a6d637f857a4b526d0041a39cffe8676e0
3
+ size 16687
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 128,
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff