Zlovoblachko
commited on
Add SetFit model
Browse files- 1_Pooling/config.json +10 -0
- README.md +935 -0
- config.json +26 -0
- config_sentence_transformers.json +9 -0
- config_setfit.json +10 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +64 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 384,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,935 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: setfit
|
3 |
+
tags:
|
4 |
+
- setfit
|
5 |
+
- sentence-transformers
|
6 |
+
- text-classification
|
7 |
+
- generated_from_setfit_trainer
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
widget:
|
11 |
+
- text: It doesn't depend on hi-teck evangelism.
|
12 |
+
- text: But in the all region we see gender unequal; in 2000 boys have education often
|
13 |
+
then girls on 15 millions.
|
14 |
+
- text: There is opinion, that universities should have equal amount of male and female
|
15 |
+
students in every subject in society.
|
16 |
+
- text: A building's style may say a lot about its history.
|
17 |
+
- text: Manufactured goods by rail is the same amount as by road, Machinery transported
|
18 |
+
by road has minimal percent in second chart.
|
19 |
+
pipeline_tag: text-classification
|
20 |
+
inference: true
|
21 |
+
base_model: sentence-transformers/all-MiniLM-L6-v2
|
22 |
+
model-index:
|
23 |
+
- name: SetFit with sentence-transformers/all-MiniLM-L6-v2
|
24 |
+
results:
|
25 |
+
- task:
|
26 |
+
type: text-classification
|
27 |
+
name: Text Classification
|
28 |
+
dataset:
|
29 |
+
name: Unknown
|
30 |
+
type: unknown
|
31 |
+
split: test
|
32 |
+
metrics:
|
33 |
+
- type: accuracy
|
34 |
+
value: 0.592741935483871
|
35 |
+
name: Accuracy
|
36 |
+
---
|
37 |
+
|
38 |
+
# SetFit with sentence-transformers/all-MiniLM-L6-v2
|
39 |
+
|
40 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
41 |
+
|
42 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
43 |
+
|
44 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
45 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
46 |
+
|
47 |
+
## Model Details
|
48 |
+
|
49 |
+
### Model Description
|
50 |
+
- **Model Type:** SetFit
|
51 |
+
- **Sentence Transformer body:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2)
|
52 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
53 |
+
- **Maximum Sequence Length:** 256 tokens
|
54 |
+
- **Number of Classes:** 5 classes
|
55 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
56 |
+
<!-- - **Language:** Unknown -->
|
57 |
+
<!-- - **License:** Unknown -->
|
58 |
+
|
59 |
+
### Model Sources
|
60 |
+
|
61 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
62 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
63 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
64 |
+
|
65 |
+
### Model Labels
|
66 |
+
| Label | Examples |
|
67 |
+
|:-----------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
68 |
+
| Copying expression | <ul><li>'What is needed to improve the situation with widespread using of gadjets is definite action should be encouraged and promoted by means of avoiding them.'</li><li>'Inside every of us are our passions.'</li><li>'The number of 15-59 year old people will increase for 11% but the number of 0-14 will fall and become 37%.'</li></ul> |
|
69 |
+
| Synonyms | <ul><li>'But some persons consider that the institutes should accept the equal amount of girls and boys in every faculty.'</li><li>'Nowadays problem of ecology and environment is rather acute and many people are alarmed by it.'</li><li>'The amount of people over 65 was rising between 1940 and the end of 1970s.'</li></ul> |
|
70 |
+
| Tense semantics | <ul><li>'After that the figure uncreases dramatically from 180 billions in 2009 to approximately 279 billions in 2011.'</li><li>'On the contrary, in 2014 the UK book market demonstrate minimum income, only 2,6 and 1,8 billion dollars for print book and eBook, correspondely.'</li><li>'It is not clear, what it is depends on, but after the higest point in 42% in Japan the percentage get down to 30%.'</li></ul> |
|
71 |
+
| Word form transmission | <ul><li>'A lot of people from music and cinema industry lose money due to somebody sends pirate copies to the internet.'</li><li>'The deal was worth $2 billions .'</li><li>'According to the projections numbers of people in the age of 15-60 years will show a considerable increase in 2050 by 11 per cent, such as people aged 60 and more years by 2,1 percent.'</li></ul> |
|
72 |
+
| Transliteration | <ul><li>'According to the statistic a lot of people with some horible diseases can get cvalificate help only in Japan.'</li><li>"It doesn't depend on hi-teck evangelism."</li><li>'GMO technologies are believed to be dangerous.'</li></ul> |
|
73 |
+
|
74 |
+
## Evaluation
|
75 |
+
|
76 |
+
### Metrics
|
77 |
+
| Label | Accuracy |
|
78 |
+
|:--------|:---------|
|
79 |
+
| **all** | 0.5927 |
|
80 |
+
|
81 |
+
## Uses
|
82 |
+
|
83 |
+
### Direct Use for Inference
|
84 |
+
|
85 |
+
First install the SetFit library:
|
86 |
+
|
87 |
+
```bash
|
88 |
+
pip install setfit
|
89 |
+
```
|
90 |
+
|
91 |
+
Then you can load this model and run inference.
|
92 |
+
|
93 |
+
```python
|
94 |
+
from setfit import SetFitModel
|
95 |
+
|
96 |
+
# Download from the 🤗 Hub
|
97 |
+
model = SetFitModel.from_pretrained("Zlovoblachko/L1-classifier")
|
98 |
+
# Run inference
|
99 |
+
preds = model("It doesn't depend on hi-teck evangelism.")
|
100 |
+
```
|
101 |
+
|
102 |
+
<!--
|
103 |
+
### Downstream Use
|
104 |
+
|
105 |
+
*List how someone could finetune this model on their own dataset.*
|
106 |
+
-->
|
107 |
+
|
108 |
+
<!--
|
109 |
+
### Out-of-Scope Use
|
110 |
+
|
111 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
112 |
+
-->
|
113 |
+
|
114 |
+
<!--
|
115 |
+
## Bias, Risks and Limitations
|
116 |
+
|
117 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
118 |
+
-->
|
119 |
+
|
120 |
+
<!--
|
121 |
+
### Recommendations
|
122 |
+
|
123 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
124 |
+
-->
|
125 |
+
|
126 |
+
## Training Details
|
127 |
+
|
128 |
+
### Training Set Metrics
|
129 |
+
| Training set | Min | Median | Max |
|
130 |
+
|:-------------|:----|:-------|:----|
|
131 |
+
| Word count | 2 | 20.788 | 54 |
|
132 |
+
|
133 |
+
| Label | Training Sample Count |
|
134 |
+
|:-----------------------|:----------------------|
|
135 |
+
| Synonyms | 91 |
|
136 |
+
| Copying expression | 55 |
|
137 |
+
| Tense semantics | 57 |
|
138 |
+
| Word form transmission | 32 |
|
139 |
+
| Transliteration | 15 |
|
140 |
+
|
141 |
+
### Training Hyperparameters
|
142 |
+
- batch_size: (32, 32)
|
143 |
+
- num_epochs: (15, 15)
|
144 |
+
- max_steps: -1
|
145 |
+
- sampling_strategy: oversampling
|
146 |
+
- body_learning_rate: (2e-05, 1e-05)
|
147 |
+
- head_learning_rate: 0.01
|
148 |
+
- loss: CosineSimilarityLoss
|
149 |
+
- distance_metric: cosine_distance
|
150 |
+
- margin: 0.25
|
151 |
+
- end_to_end: False
|
152 |
+
- use_amp: False
|
153 |
+
- warmup_proportion: 0.1
|
154 |
+
- seed: 42
|
155 |
+
- eval_max_steps: -1
|
156 |
+
- load_best_model_at_end: False
|
157 |
+
|
158 |
+
### Training Results
|
159 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
160 |
+
|:-------:|:-----:|:-------------:|:---------------:|
|
161 |
+
| 0.0043 | 1 | 0.3438 | - |
|
162 |
+
| 0.0342 | 50 | 0.2906 | - |
|
163 |
+
| 0.0685 | 100 | 0.2761 | - |
|
164 |
+
| 0.1027 | 150 | 0.2696 | - |
|
165 |
+
| 0.1370 | 200 | 0.2381 | - |
|
166 |
+
| 0.1712 | 250 | 0.2542 | - |
|
167 |
+
| 0.2055 | 300 | 0.1781 | - |
|
168 |
+
| 0.2397 | 350 | 0.2067 | - |
|
169 |
+
| 0.2740 | 400 | 0.222 | - |
|
170 |
+
| 0.3082 | 450 | 0.2372 | - |
|
171 |
+
| 0.3425 | 500 | 0.193 | - |
|
172 |
+
| 0.3767 | 550 | 0.2399 | - |
|
173 |
+
| 0.4110 | 600 | 0.1712 | - |
|
174 |
+
| 0.4452 | 650 | 0.1697 | - |
|
175 |
+
| 0.4795 | 700 | 0.1507 | - |
|
176 |
+
| 0.5137 | 750 | 0.0947 | - |
|
177 |
+
| 0.5479 | 800 | 0.0722 | - |
|
178 |
+
| 0.5822 | 850 | 0.0975 | - |
|
179 |
+
| 0.6164 | 900 | 0.035 | - |
|
180 |
+
| 0.6507 | 950 | 0.0114 | - |
|
181 |
+
| 0.6849 | 1000 | 0.0332 | - |
|
182 |
+
| 0.7192 | 1050 | 0.0274 | - |
|
183 |
+
| 0.7534 | 1100 | 0.0126 | - |
|
184 |
+
| 0.7877 | 1150 | 0.0267 | - |
|
185 |
+
| 0.8219 | 1200 | 0.0194 | - |
|
186 |
+
| 0.8562 | 1250 | 0.0206 | - |
|
187 |
+
| 0.8904 | 1300 | 0.0228 | - |
|
188 |
+
| 0.9247 | 1350 | 0.0076 | - |
|
189 |
+
| 0.9589 | 1400 | 0.0342 | - |
|
190 |
+
| 0.9932 | 1450 | 0.0252 | - |
|
191 |
+
| 1.0274 | 1500 | 0.0164 | - |
|
192 |
+
| 1.0616 | 1550 | 0.0049 | - |
|
193 |
+
| 1.0959 | 1600 | 0.0043 | - |
|
194 |
+
| 1.1301 | 1650 | 0.0114 | - |
|
195 |
+
| 1.1644 | 1700 | 0.03 | - |
|
196 |
+
| 1.1986 | 1750 | 0.0026 | - |
|
197 |
+
| 1.2329 | 1800 | 0.0012 | - |
|
198 |
+
| 1.2671 | 1850 | 0.0073 | - |
|
199 |
+
| 1.3014 | 1900 | 0.0146 | - |
|
200 |
+
| 1.3356 | 1950 | 0.001 | - |
|
201 |
+
| 1.3699 | 2000 | 0.0088 | - |
|
202 |
+
| 1.4041 | 2050 | 0.0031 | - |
|
203 |
+
| 1.4384 | 2100 | 0.0125 | - |
|
204 |
+
| 1.4726 | 2150 | 0.0357 | - |
|
205 |
+
| 1.5068 | 2200 | 0.0186 | - |
|
206 |
+
| 1.5411 | 2250 | 0.0178 | - |
|
207 |
+
| 1.5753 | 2300 | 0.0071 | - |
|
208 |
+
| 1.6096 | 2350 | 0.0186 | - |
|
209 |
+
| 1.6438 | 2400 | 0.0077 | - |
|
210 |
+
| 1.6781 | 2450 | 0.0183 | - |
|
211 |
+
| 1.7123 | 2500 | 0.0007 | - |
|
212 |
+
| 1.7466 | 2550 | 0.0007 | - |
|
213 |
+
| 1.7808 | 2600 | 0.0052 | - |
|
214 |
+
| 1.8151 | 2650 | 0.0077 | - |
|
215 |
+
| 1.8493 | 2700 | 0.0421 | - |
|
216 |
+
| 1.8836 | 2750 | 0.0272 | - |
|
217 |
+
| 1.9178 | 2800 | 0.0144 | - |
|
218 |
+
| 1.9521 | 2850 | 0.0038 | - |
|
219 |
+
| 1.9863 | 2900 | 0.0043 | - |
|
220 |
+
| 2.0205 | 2950 | 0.0187 | - |
|
221 |
+
| 2.0548 | 3000 | 0.0075 | - |
|
222 |
+
| 2.0890 | 3050 | 0.0151 | - |
|
223 |
+
| 2.1233 | 3100 | 0.0114 | - |
|
224 |
+
| 2.1575 | 3150 | 0.0022 | - |
|
225 |
+
| 2.1918 | 3200 | 0.0007 | - |
|
226 |
+
| 2.2260 | 3250 | 0.0196 | - |
|
227 |
+
| 2.2603 | 3300 | 0.0266 | - |
|
228 |
+
| 2.2945 | 3350 | 0.0139 | - |
|
229 |
+
| 2.3288 | 3400 | 0.0169 | - |
|
230 |
+
| 2.3630 | 3450 | 0.0124 | - |
|
231 |
+
| 2.3973 | 3500 | 0.0018 | - |
|
232 |
+
| 2.4315 | 3550 | 0.0242 | - |
|
233 |
+
| 2.4658 | 3600 | 0.0402 | - |
|
234 |
+
| 2.5 | 3650 | 0.0015 | - |
|
235 |
+
| 2.5342 | 3700 | 0.0042 | - |
|
236 |
+
| 2.5685 | 3750 | 0.0437 | - |
|
237 |
+
| 2.6027 | 3800 | 0.006 | - |
|
238 |
+
| 2.6370 | 3850 | 0.0005 | - |
|
239 |
+
| 2.6712 | 3900 | 0.0118 | - |
|
240 |
+
| 2.7055 | 3950 | 0.0166 | - |
|
241 |
+
| 2.7397 | 4000 | 0.025 | - |
|
242 |
+
| 2.7740 | 4050 | 0.0167 | - |
|
243 |
+
| 2.8082 | 4100 | 0.0285 | - |
|
244 |
+
| 2.8425 | 4150 | 0.0048 | - |
|
245 |
+
| 2.8767 | 4200 | 0.0149 | - |
|
246 |
+
| 2.9110 | 4250 | 0.0078 | - |
|
247 |
+
| 2.9452 | 4300 | 0.0097 | - |
|
248 |
+
| 2.9795 | 4350 | 0.0068 | - |
|
249 |
+
| 3.0137 | 4400 | 0.0235 | - |
|
250 |
+
| 3.0479 | 4450 | 0.0004 | - |
|
251 |
+
| 3.0822 | 4500 | 0.0355 | - |
|
252 |
+
| 3.1164 | 4550 | 0.0237 | - |
|
253 |
+
| 3.1507 | 4600 | 0.0004 | - |
|
254 |
+
| 3.1849 | 4650 | 0.0003 | - |
|
255 |
+
| 3.2192 | 4700 | 0.0038 | - |
|
256 |
+
| 3.2534 | 4750 | 0.0002 | - |
|
257 |
+
| 3.2877 | 4800 | 0.0105 | - |
|
258 |
+
| 3.3219 | 4850 | 0.0055 | - |
|
259 |
+
| 3.3562 | 4900 | 0.0282 | - |
|
260 |
+
| 3.3904 | 4950 | 0.0105 | - |
|
261 |
+
| 3.4247 | 5000 | 0.0362 | - |
|
262 |
+
| 3.4589 | 5050 | 0.0004 | - |
|
263 |
+
| 3.4932 | 5100 | 0.0229 | - |
|
264 |
+
| 3.5274 | 5150 | 0.0092 | - |
|
265 |
+
| 3.5616 | 5200 | 0.033 | - |
|
266 |
+
| 3.5959 | 5250 | 0.0003 | - |
|
267 |
+
| 3.6301 | 5300 | 0.0444 | - |
|
268 |
+
| 3.6644 | 5350 | 0.0181 | - |
|
269 |
+
| 3.6986 | 5400 | 0.0254 | - |
|
270 |
+
| 3.7329 | 5450 | 0.0057 | - |
|
271 |
+
| 3.7671 | 5500 | 0.0511 | - |
|
272 |
+
| 3.8014 | 5550 | 0.0024 | - |
|
273 |
+
| 3.8356 | 5600 | 0.0195 | - |
|
274 |
+
| 3.8699 | 5650 | 0.0202 | - |
|
275 |
+
| 3.9041 | 5700 | 0.0003 | - |
|
276 |
+
| 3.9384 | 5750 | 0.0322 | - |
|
277 |
+
| 3.9726 | 5800 | 0.0123 | - |
|
278 |
+
| 4.0068 | 5850 | 0.0002 | - |
|
279 |
+
| 4.0411 | 5900 | 0.0002 | - |
|
280 |
+
| 4.0753 | 5950 | 0.008 | - |
|
281 |
+
| 4.1096 | 6000 | 0.0053 | - |
|
282 |
+
| 4.1438 | 6050 | 0.0003 | - |
|
283 |
+
| 4.1781 | 6100 | 0.0213 | - |
|
284 |
+
| 4.2123 | 6150 | 0.0046 | - |
|
285 |
+
| 4.2466 | 6200 | 0.0331 | - |
|
286 |
+
| 4.2808 | 6250 | 0.0078 | - |
|
287 |
+
| 4.3151 | 6300 | 0.0042 | - |
|
288 |
+
| 4.3493 | 6350 | 0.0234 | - |
|
289 |
+
| 4.3836 | 6400 | 0.0043 | - |
|
290 |
+
| 4.4178 | 6450 | 0.0253 | - |
|
291 |
+
| 4.4521 | 6500 | 0.0303 | - |
|
292 |
+
| 4.4863 | 6550 | 0.004 | - |
|
293 |
+
| 4.5205 | 6600 | 0.0166 | - |
|
294 |
+
| 4.5548 | 6650 | 0.0269 | - |
|
295 |
+
| 4.5890 | 6700 | 0.0079 | - |
|
296 |
+
| 4.6233 | 6750 | 0.0001 | - |
|
297 |
+
| 4.6575 | 6800 | 0.0002 | - |
|
298 |
+
| 4.6918 | 6850 | 0.0002 | - |
|
299 |
+
| 4.7260 | 6900 | 0.0199 | - |
|
300 |
+
| 4.7603 | 6950 | 0.0282 | - |
|
301 |
+
| 4.7945 | 7000 | 0.0016 | - |
|
302 |
+
| 4.8288 | 7050 | 0.0068 | - |
|
303 |
+
| 4.8630 | 7100 | 0.0054 | - |
|
304 |
+
| 4.8973 | 7150 | 0.036 | - |
|
305 |
+
| 4.9315 | 7200 | 0.0054 | - |
|
306 |
+
| 4.9658 | 7250 | 0.0174 | - |
|
307 |
+
| 5.0 | 7300 | 0.0001 | - |
|
308 |
+
| 5.0342 | 7350 | 0.0123 | - |
|
309 |
+
| 5.0685 | 7400 | 0.0218 | - |
|
310 |
+
| 5.1027 | 7450 | 0.0162 | - |
|
311 |
+
| 5.1370 | 7500 | 0.0181 | - |
|
312 |
+
| 5.1712 | 7550 | 0.0001 | - |
|
313 |
+
| 5.2055 | 7600 | 0.0201 | - |
|
314 |
+
| 5.2397 | 7650 | 0.0232 | - |
|
315 |
+
| 5.2740 | 7700 | 0.0003 | - |
|
316 |
+
| 5.3082 | 7750 | 0.0002 | - |
|
317 |
+
| 5.3425 | 7800 | 0.0094 | - |
|
318 |
+
| 5.3767 | 7850 | 0.0151 | - |
|
319 |
+
| 5.4110 | 7900 | 0.0099 | - |
|
320 |
+
| 5.4452 | 7950 | 0.01 | - |
|
321 |
+
| 5.4795 | 8000 | 0.0378 | - |
|
322 |
+
| 5.5137 | 8050 | 0.0199 | - |
|
323 |
+
| 5.5479 | 8100 | 0.0201 | - |
|
324 |
+
| 5.5822 | 8150 | 0.0242 | - |
|
325 |
+
| 5.6164 | 8200 | 0.0015 | - |
|
326 |
+
| 5.6507 | 8250 | 0.0002 | - |
|
327 |
+
| 5.6849 | 8300 | 0.0047 | - |
|
328 |
+
| 5.7192 | 8350 | 0.0002 | - |
|
329 |
+
| 5.7534 | 8400 | 0.0001 | - |
|
330 |
+
| 5.7877 | 8450 | 0.0215 | - |
|
331 |
+
| 5.8219 | 8500 | 0.0159 | - |
|
332 |
+
| 5.8562 | 8550 | 0.0001 | - |
|
333 |
+
| 5.8904 | 8600 | 0.0194 | - |
|
334 |
+
| 5.9247 | 8650 | 0.0058 | - |
|
335 |
+
| 5.9589 | 8700 | 0.0001 | - |
|
336 |
+
| 5.9932 | 8750 | 0.0164 | - |
|
337 |
+
| 6.0274 | 8800 | 0.0272 | - |
|
338 |
+
| 6.0616 | 8850 | 0.0001 | - |
|
339 |
+
| 6.0959 | 8900 | 0.0031 | - |
|
340 |
+
| 6.1301 | 8950 | 0.0154 | - |
|
341 |
+
| 6.1644 | 9000 | 0.0403 | - |
|
342 |
+
| 6.1986 | 9050 | 0.0035 | - |
|
343 |
+
| 6.2329 | 9100 | 0.0001 | - |
|
344 |
+
| 6.2671 | 9150 | 0.0061 | - |
|
345 |
+
| 6.3014 | 9200 | 0.0118 | - |
|
346 |
+
| 6.3356 | 9250 | 0.0031 | - |
|
347 |
+
| 6.3699 | 9300 | 0.0001 | - |
|
348 |
+
| 6.4041 | 9350 | 0.0098 | - |
|
349 |
+
| 6.4384 | 9400 | 0.0001 | - |
|
350 |
+
| 6.4726 | 9450 | 0.0343 | - |
|
351 |
+
| 6.5068 | 9500 | 0.017 | - |
|
352 |
+
| 6.5411 | 9550 | 0.0025 | - |
|
353 |
+
| 6.5753 | 9600 | 0.0001 | - |
|
354 |
+
| 6.6096 | 9650 | 0.0181 | - |
|
355 |
+
| 6.6438 | 9700 | 0.0191 | - |
|
356 |
+
| 6.6781 | 9750 | 0.0186 | - |
|
357 |
+
| 6.7123 | 9800 | 0.0001 | - |
|
358 |
+
| 6.7466 | 9850 | 0.0002 | - |
|
359 |
+
| 6.7808 | 9900 | 0.0001 | - |
|
360 |
+
| 6.8151 | 9950 | 0.0086 | - |
|
361 |
+
| 6.8493 | 10000 | 0.0377 | - |
|
362 |
+
| 6.8836 | 10050 | 0.0167 | - |
|
363 |
+
| 6.9178 | 10100 | 0.0034 | - |
|
364 |
+
| 6.9521 | 10150 | 0.0054 | - |
|
365 |
+
| 6.9863 | 10200 | 0.0048 | - |
|
366 |
+
| 7.0205 | 10250 | 0.0219 | - |
|
367 |
+
| 7.0548 | 10300 | 0.0001 | - |
|
368 |
+
| 7.0890 | 10350 | 0.0001 | - |
|
369 |
+
| 7.1233 | 10400 | 0.0262 | - |
|
370 |
+
| 7.1575 | 10450 | 0.0069 | - |
|
371 |
+
| 7.1918 | 10500 | 0.0001 | - |
|
372 |
+
| 7.2260 | 10550 | 0.0158 | - |
|
373 |
+
| 7.2603 | 10600 | 0.0192 | - |
|
374 |
+
| 7.2945 | 10650 | 0.0098 | - |
|
375 |
+
| 7.3288 | 10700 | 0.0001 | - |
|
376 |
+
| 7.3630 | 10750 | 0.0002 | - |
|
377 |
+
| 7.3973 | 10800 | 0.0021 | - |
|
378 |
+
| 7.4315 | 10850 | 0.0252 | - |
|
379 |
+
| 7.4658 | 10900 | 0.0383 | - |
|
380 |
+
| 7.5 | 10950 | 0.0001 | - |
|
381 |
+
| 7.5342 | 11000 | 0.0001 | - |
|
382 |
+
| 7.5685 | 11050 | 0.0491 | - |
|
383 |
+
| 7.6027 | 11100 | 0.0076 | - |
|
384 |
+
| 7.6370 | 11150 | 0.0089 | - |
|
385 |
+
| 7.6712 | 11200 | 0.0162 | - |
|
386 |
+
| 7.7055 | 11250 | 0.0163 | - |
|
387 |
+
| 7.7397 | 11300 | 0.0188 | - |
|
388 |
+
| 7.7740 | 11350 | 0.0141 | - |
|
389 |
+
| 7.8082 | 11400 | 0.0277 | - |
|
390 |
+
| 7.8425 | 11450 | 0.0001 | - |
|
391 |
+
| 7.8767 | 11500 | 0.0001 | - |
|
392 |
+
| 7.9110 | 11550 | 0.0055 | - |
|
393 |
+
| 7.9452 | 11600 | 0.0029 | - |
|
394 |
+
| 7.9795 | 11650 | 0.0001 | - |
|
395 |
+
| 8.0137 | 11700 | 0.0186 | - |
|
396 |
+
| 8.0479 | 11750 | 0.0037 | - |
|
397 |
+
| 8.0822 | 11800 | 0.0205 | - |
|
398 |
+
| 8.1164 | 11850 | 0.0217 | - |
|
399 |
+
| 8.1507 | 11900 | 0.0036 | - |
|
400 |
+
| 8.1849 | 11950 | 0.0039 | - |
|
401 |
+
| 8.2192 | 12000 | 0.0001 | - |
|
402 |
+
| 8.2534 | 12050 | 0.0055 | - |
|
403 |
+
| 8.2877 | 12100 | 0.0027 | - |
|
404 |
+
| 8.3219 | 12150 | 0.0029 | - |
|
405 |
+
| 8.3562 | 12200 | 0.0279 | - |
|
406 |
+
| 8.3904 | 12250 | 0.0139 | - |
|
407 |
+
| 8.4247 | 12300 | 0.04 | - |
|
408 |
+
| 8.4589 | 12350 | 0.003 | - |
|
409 |
+
| 8.4932 | 12400 | 0.0161 | - |
|
410 |
+
| 8.5274 | 12450 | 0.0001 | - |
|
411 |
+
| 8.5616 | 12500 | 0.035 | - |
|
412 |
+
| 8.5959 | 12550 | 0.0021 | - |
|
413 |
+
| 8.6301 | 12600 | 0.0355 | - |
|
414 |
+
| 8.6644 | 12650 | 0.0139 | - |
|
415 |
+
| 8.6986 | 12700 | 0.0183 | - |
|
416 |
+
| 8.7329 | 12750 | 0.0041 | - |
|
417 |
+
| 8.7671 | 12800 | 0.0354 | - |
|
418 |
+
| 8.8014 | 12850 | 0.0 | - |
|
419 |
+
| 8.8356 | 12900 | 0.0197 | - |
|
420 |
+
| 8.8699 | 12950 | 0.0189 | - |
|
421 |
+
| 8.9041 | 13000 | 0.0063 | - |
|
422 |
+
| 8.9384 | 13050 | 0.0309 | - |
|
423 |
+
| 8.9726 | 13100 | 0.0029 | - |
|
424 |
+
| 9.0068 | 13150 | 0.0027 | - |
|
425 |
+
| 9.0411 | 13200 | 0.0018 | - |
|
426 |
+
| 9.0753 | 13250 | 0.0104 | - |
|
427 |
+
| 9.1096 | 13300 | 0.0057 | - |
|
428 |
+
| 9.1438 | 13350 | 0.0051 | - |
|
429 |
+
| 9.1781 | 13400 | 0.0172 | - |
|
430 |
+
| 9.2123 | 13450 | 0.0001 | - |
|
431 |
+
| 9.2466 | 13500 | 0.0347 | - |
|
432 |
+
| 9.2808 | 13550 | 0.0024 | - |
|
433 |
+
| 9.3151 | 13600 | 0.0147 | - |
|
434 |
+
| 9.3493 | 13650 | 0.0218 | - |
|
435 |
+
| 9.3836 | 13700 | 0.0028 | - |
|
436 |
+
| 9.4178 | 13750 | 0.0205 | - |
|
437 |
+
| 9.4521 | 13800 | 0.0215 | - |
|
438 |
+
| 9.4863 | 13850 | 0.0001 | - |
|
439 |
+
| 9.5205 | 13900 | 0.0157 | - |
|
440 |
+
| 9.5548 | 13950 | 0.0227 | - |
|
441 |
+
| 9.5890 | 14000 | 0.0001 | - |
|
442 |
+
| 9.6233 | 14050 | 0.0048 | - |
|
443 |
+
| 9.6575 | 14100 | 0.0106 | - |
|
444 |
+
| 9.6918 | 14150 | 0.0077 | - |
|
445 |
+
| 9.7260 | 14200 | 0.0225 | - |
|
446 |
+
| 9.7603 | 14250 | 0.0173 | - |
|
447 |
+
| 9.7945 | 14300 | 0.0028 | - |
|
448 |
+
| 9.8288 | 14350 | 0.0022 | - |
|
449 |
+
| 9.8630 | 14400 | 0.003 | - |
|
450 |
+
| 9.8973 | 14450 | 0.0355 | - |
|
451 |
+
| 9.9315 | 14500 | 0.0001 | - |
|
452 |
+
| 9.9658 | 14550 | 0.0187 | - |
|
453 |
+
| 10.0 | 14600 | 0.0001 | - |
|
454 |
+
| 0.0007 | 1 | 0.0055 | - |
|
455 |
+
| 0.0342 | 50 | 0.0127 | - |
|
456 |
+
| 0.0685 | 100 | 0.0206 | - |
|
457 |
+
| 0.1027 | 150 | 0.0195 | - |
|
458 |
+
| 0.1370 | 200 | 0.0238 | - |
|
459 |
+
| 0.1712 | 250 | 0.0029 | - |
|
460 |
+
| 0.2055 | 300 | 0.0204 | - |
|
461 |
+
| 0.2397 | 350 | 0.0174 | - |
|
462 |
+
| 0.2740 | 400 | 0.0001 | - |
|
463 |
+
| 0.3082 | 450 | 0.0023 | - |
|
464 |
+
| 0.3425 | 500 | 0.0001 | - |
|
465 |
+
| 0.3767 | 550 | 0.0254 | - |
|
466 |
+
| 0.4110 | 600 | 0.0029 | - |
|
467 |
+
| 0.4452 | 650 | 0.0082 | - |
|
468 |
+
| 0.4795 | 700 | 0.0411 | - |
|
469 |
+
| 0.5137 | 750 | 0.0159 | - |
|
470 |
+
| 0.5479 | 800 | 0.0207 | - |
|
471 |
+
| 0.5822 | 850 | 0.0173 | - |
|
472 |
+
| 0.6164 | 900 | 0.0001 | - |
|
473 |
+
| 0.6507 | 950 | 0.0018 | - |
|
474 |
+
| 0.6849 | 1000 | 0.0059 | - |
|
475 |
+
| 0.7192 | 1050 | 0.0014 | - |
|
476 |
+
| 0.7534 | 1100 | 0.0022 | - |
|
477 |
+
| 0.7877 | 1150 | 0.0187 | - |
|
478 |
+
| 0.8219 | 1200 | 0.0158 | - |
|
479 |
+
| 0.8562 | 1250 | 0.0025 | - |
|
480 |
+
| 0.8904 | 1300 | 0.0113 | - |
|
481 |
+
| 0.9247 | 1350 | 0.0007 | - |
|
482 |
+
| 0.9589 | 1400 | 0.004 | - |
|
483 |
+
| 0.9932 | 1450 | 0.0216 | - |
|
484 |
+
| 1.0274 | 1500 | 0.0213 | - |
|
485 |
+
| 1.0616 | 1550 | 0.0044 | - |
|
486 |
+
| 1.0959 | 1600 | 0.0025 | - |
|
487 |
+
| 1.1301 | 1650 | 0.0154 | - |
|
488 |
+
| 1.1644 | 1700 | 0.038 | - |
|
489 |
+
| 1.1986 | 1750 | 0.0001 | - |
|
490 |
+
| 1.2329 | 1800 | 0.0004 | - |
|
491 |
+
| 1.2671 | 1850 | 0.0065 | - |
|
492 |
+
| 1.3014 | 1900 | 0.0087 | - |
|
493 |
+
| 1.3356 | 1950 | 0.0001 | - |
|
494 |
+
| 1.3699 | 2000 | 0.0039 | - |
|
495 |
+
| 1.4041 | 2050 | 0.0005 | - |
|
496 |
+
| 1.4384 | 2100 | 0.0087 | - |
|
497 |
+
| 1.4726 | 2150 | 0.0369 | - |
|
498 |
+
| 1.5068 | 2200 | 0.0157 | - |
|
499 |
+
| 1.5411 | 2250 | 0.0094 | - |
|
500 |
+
| 1.5753 | 2300 | 0.0042 | - |
|
501 |
+
| 1.6096 | 2350 | 0.018 | - |
|
502 |
+
| 1.6438 | 2400 | 0.014 | - |
|
503 |
+
| 1.6781 | 2450 | 0.0161 | - |
|
504 |
+
| 1.7123 | 2500 | 0.0011 | - |
|
505 |
+
| 1.7466 | 2550 | 0.0001 | - |
|
506 |
+
| 1.7808 | 2600 | 0.004 | - |
|
507 |
+
| 1.8151 | 2650 | 0.0048 | - |
|
508 |
+
| 1.8493 | 2700 | 0.0403 | - |
|
509 |
+
| 1.8836 | 2750 | 0.0254 | - |
|
510 |
+
| 1.9178 | 2800 | 0.0124 | - |
|
511 |
+
| 1.9521 | 2850 | 0.0028 | - |
|
512 |
+
| 1.9863 | 2900 | 0.0026 | - |
|
513 |
+
| 2.0205 | 2950 | 0.0171 | - |
|
514 |
+
| 2.0548 | 3000 | 0.0049 | - |
|
515 |
+
| 2.0890 | 3050 | 0.0092 | - |
|
516 |
+
| 2.1233 | 3100 | 0.0134 | - |
|
517 |
+
| 2.1575 | 3150 | 0.0021 | - |
|
518 |
+
| 2.1918 | 3200 | 0.0001 | - |
|
519 |
+
| 2.2260 | 3250 | 0.0153 | - |
|
520 |
+
| 2.2603 | 3300 | 0.0253 | - |
|
521 |
+
| 2.2945 | 3350 | 0.0095 | - |
|
522 |
+
| 2.3288 | 3400 | 0.0144 | - |
|
523 |
+
| 2.3630 | 3450 | 0.0064 | - |
|
524 |
+
| 2.3973 | 3500 | 0.0013 | - |
|
525 |
+
| 2.4315 | 3550 | 0.0216 | - |
|
526 |
+
| 2.4658 | 3600 | 0.0387 | - |
|
527 |
+
| 2.5 | 3650 | 0.0018 | - |
|
528 |
+
| 2.5342 | 3700 | 0.0034 | - |
|
529 |
+
| 2.5685 | 3750 | 0.0428 | - |
|
530 |
+
| 2.6027 | 3800 | 0.0055 | - |
|
531 |
+
| 2.6370 | 3850 | 0.0001 | - |
|
532 |
+
| 2.6712 | 3900 | 0.0154 | - |
|
533 |
+
| 2.7055 | 3950 | 0.0176 | - |
|
534 |
+
| 2.7397 | 4000 | 0.0213 | - |
|
535 |
+
| 2.7740 | 4050 | 0.016 | - |
|
536 |
+
| 2.8082 | 4100 | 0.0293 | - |
|
537 |
+
| 2.8425 | 4150 | 0.0034 | - |
|
538 |
+
| 2.8767 | 4200 | 0.0119 | - |
|
539 |
+
| 2.9110 | 4250 | 0.0061 | - |
|
540 |
+
| 2.9452 | 4300 | 0.0068 | - |
|
541 |
+
| 2.9795 | 4350 | 0.006 | - |
|
542 |
+
| 3.0137 | 4400 | 0.0211 | - |
|
543 |
+
| 3.0479 | 4450 | 0.0001 | - |
|
544 |
+
| 3.0822 | 4500 | 0.0303 | - |
|
545 |
+
| 3.1164 | 4550 | 0.0225 | - |
|
546 |
+
| 3.1507 | 4600 | 0.0001 | - |
|
547 |
+
| 3.1849 | 4650 | 0.0002 | - |
|
548 |
+
| 3.2192 | 4700 | 0.0031 | - |
|
549 |
+
| 3.2534 | 4750 | 0.0001 | - |
|
550 |
+
| 3.2877 | 4800 | 0.0103 | - |
|
551 |
+
| 3.3219 | 4850 | 0.0055 | - |
|
552 |
+
| 3.3562 | 4900 | 0.0297 | - |
|
553 |
+
| 3.3904 | 4950 | 0.0121 | - |
|
554 |
+
| 3.4247 | 5000 | 0.0348 | - |
|
555 |
+
| 3.4589 | 5050 | 0.0003 | - |
|
556 |
+
| 3.4932 | 5100 | 0.0212 | - |
|
557 |
+
| 3.5274 | 5150 | 0.0077 | - |
|
558 |
+
| 3.5616 | 5200 | 0.0339 | - |
|
559 |
+
| 3.5959 | 5250 | 0.0001 | - |
|
560 |
+
| 3.6301 | 5300 | 0.0444 | - |
|
561 |
+
| 3.6644 | 5350 | 0.0167 | - |
|
562 |
+
| 3.6986 | 5400 | 0.0245 | - |
|
563 |
+
| 3.7329 | 5450 | 0.005 | - |
|
564 |
+
| 3.7671 | 5500 | 0.047 | - |
|
565 |
+
| 3.8014 | 5550 | 0.0021 | - |
|
566 |
+
| 3.8356 | 5600 | 0.019 | - |
|
567 |
+
| 3.8699 | 5650 | 0.0187 | - |
|
568 |
+
| 3.9041 | 5700 | 0.0001 | - |
|
569 |
+
| 3.9384 | 5750 | 0.0328 | - |
|
570 |
+
| 3.9726 | 5800 | 0.0097 | - |
|
571 |
+
| 4.0068 | 5850 | 0.0001 | - |
|
572 |
+
| 4.0411 | 5900 | 0.0001 | - |
|
573 |
+
| 4.0753 | 5950 | 0.0078 | - |
|
574 |
+
| 4.1096 | 6000 | 0.0057 | - |
|
575 |
+
| 4.1438 | 6050 | 0.0002 | - |
|
576 |
+
| 4.1781 | 6100 | 0.0218 | - |
|
577 |
+
| 4.2123 | 6150 | 0.0038 | - |
|
578 |
+
| 4.2466 | 6200 | 0.0337 | - |
|
579 |
+
| 4.2808 | 6250 | 0.0065 | - |
|
580 |
+
| 4.3151 | 6300 | 0.0033 | - |
|
581 |
+
| 4.3493 | 6350 | 0.0228 | - |
|
582 |
+
| 4.3836 | 6400 | 0.0033 | - |
|
583 |
+
| 4.4178 | 6450 | 0.0244 | - |
|
584 |
+
| 4.4521 | 6500 | 0.027 | - |
|
585 |
+
| 4.4863 | 6550 | 0.0027 | - |
|
586 |
+
| 4.5205 | 6600 | 0.0153 | - |
|
587 |
+
| 4.5548 | 6650 | 0.0241 | - |
|
588 |
+
| 4.5890 | 6700 | 0.0071 | - |
|
589 |
+
| 4.6233 | 6750 | 0.0001 | - |
|
590 |
+
| 4.6575 | 6800 | 0.0 | - |
|
591 |
+
| 4.6918 | 6850 | 0.0001 | - |
|
592 |
+
| 4.7260 | 6900 | 0.0203 | - |
|
593 |
+
| 4.7603 | 6950 | 0.0273 | - |
|
594 |
+
| 4.7945 | 7000 | 0.0017 | - |
|
595 |
+
| 4.8288 | 7050 | 0.0062 | - |
|
596 |
+
| 4.8630 | 7100 | 0.0043 | - |
|
597 |
+
| 4.8973 | 7150 | 0.0346 | - |
|
598 |
+
| 4.9315 | 7200 | 0.005 | - |
|
599 |
+
| 4.9658 | 7250 | 0.0182 | - |
|
600 |
+
| 5.0 | 7300 | 0.0001 | - |
|
601 |
+
| 5.0342 | 7350 | 0.0108 | - |
|
602 |
+
| 5.0685 | 7400 | 0.0218 | - |
|
603 |
+
| 5.1027 | 7450 | 0.0163 | - |
|
604 |
+
| 5.1370 | 7500 | 0.0195 | - |
|
605 |
+
| 5.1712 | 7550 | 0.0001 | - |
|
606 |
+
| 5.2055 | 7600 | 0.0195 | - |
|
607 |
+
| 5.2397 | 7650 | 0.0222 | - |
|
608 |
+
| 5.2740 | 7700 | 0.0002 | - |
|
609 |
+
| 5.3082 | 7750 | 0.0001 | - |
|
610 |
+
| 5.3425 | 7800 | 0.0078 | - |
|
611 |
+
| 5.3767 | 7850 | 0.0158 | - |
|
612 |
+
| 5.4110 | 7900 | 0.0081 | - |
|
613 |
+
| 5.4452 | 7950 | 0.0087 | - |
|
614 |
+
| 5.4795 | 8000 | 0.0372 | - |
|
615 |
+
| 5.5137 | 8050 | 0.019 | - |
|
616 |
+
| 5.5479 | 8100 | 0.0188 | - |
|
617 |
+
| 5.5822 | 8150 | 0.0238 | - |
|
618 |
+
| 5.6164 | 8200 | 0.0018 | - |
|
619 |
+
| 5.6507 | 8250 | 0.0001 | - |
|
620 |
+
| 5.6849 | 8300 | 0.0046 | - |
|
621 |
+
| 5.7192 | 8350 | 0.0001 | - |
|
622 |
+
| 5.7534 | 8400 | 0.0001 | - |
|
623 |
+
| 5.7877 | 8450 | 0.0216 | - |
|
624 |
+
| 5.8219 | 8500 | 0.0164 | - |
|
625 |
+
| 5.8562 | 8550 | 0.0 | - |
|
626 |
+
| 5.8904 | 8600 | 0.018 | - |
|
627 |
+
| 5.9247 | 8650 | 0.0059 | - |
|
628 |
+
| 5.9589 | 8700 | 0.0001 | - |
|
629 |
+
| 5.9932 | 8750 | 0.0168 | - |
|
630 |
+
| 6.0274 | 8800 | 0.0259 | - |
|
631 |
+
| 6.0616 | 8850 | 0.0001 | - |
|
632 |
+
| 6.0959 | 8900 | 0.0029 | - |
|
633 |
+
| 6.1301 | 8950 | 0.0159 | - |
|
634 |
+
| 6.1644 | 9000 | 0.041 | - |
|
635 |
+
| 6.1986 | 9050 | 0.0035 | - |
|
636 |
+
| 6.2329 | 9100 | 0.0001 | - |
|
637 |
+
| 6.2671 | 9150 | 0.005 | - |
|
638 |
+
| 6.3014 | 9200 | 0.0101 | - |
|
639 |
+
| 6.3356 | 9250 | 0.0027 | - |
|
640 |
+
| 6.3699 | 9300 | 0.0 | - |
|
641 |
+
| 6.4041 | 9350 | 0.0094 | - |
|
642 |
+
| 6.4384 | 9400 | 0.0001 | - |
|
643 |
+
| 6.4726 | 9450 | 0.0335 | - |
|
644 |
+
| 6.5068 | 9500 | 0.0168 | - |
|
645 |
+
| 6.5411 | 9550 | 0.0025 | - |
|
646 |
+
| 6.5753 | 9600 | 0.0001 | - |
|
647 |
+
| 6.6096 | 9650 | 0.0185 | - |
|
648 |
+
| 6.6438 | 9700 | 0.0188 | - |
|
649 |
+
| 6.6781 | 9750 | 0.0187 | - |
|
650 |
+
| 6.7123 | 9800 | 0.0001 | - |
|
651 |
+
| 6.7466 | 9850 | 0.0002 | - |
|
652 |
+
| 6.7808 | 9900 | 0.0001 | - |
|
653 |
+
| 6.8151 | 9950 | 0.0087 | - |
|
654 |
+
| 6.8493 | 10000 | 0.0371 | - |
|
655 |
+
| 6.8836 | 10050 | 0.0172 | - |
|
656 |
+
| 6.9178 | 10100 | 0.0028 | - |
|
657 |
+
| 6.9521 | 10150 | 0.0055 | - |
|
658 |
+
| 6.9863 | 10200 | 0.0043 | - |
|
659 |
+
| 7.0205 | 10250 | 0.0219 | - |
|
660 |
+
| 7.0548 | 10300 | 0.0 | - |
|
661 |
+
| 7.0890 | 10350 | 0.0001 | - |
|
662 |
+
| 7.1233 | 10400 | 0.026 | - |
|
663 |
+
| 7.1575 | 10450 | 0.0067 | - |
|
664 |
+
| 7.1918 | 10500 | 0.0001 | - |
|
665 |
+
| 7.2260 | 10550 | 0.0162 | - |
|
666 |
+
| 7.2603 | 10600 | 0.019 | - |
|
667 |
+
| 7.2945 | 10650 | 0.0093 | - |
|
668 |
+
| 7.3288 | 10700 | 0.0001 | - |
|
669 |
+
| 7.3630 | 10750 | 0.0002 | - |
|
670 |
+
| 7.3973 | 10800 | 0.002 | - |
|
671 |
+
| 7.4315 | 10850 | 0.0247 | - |
|
672 |
+
| 7.4658 | 10900 | 0.0394 | - |
|
673 |
+
| 7.5 | 10950 | 0.0001 | - |
|
674 |
+
| 7.5342 | 11000 | 0.0001 | - |
|
675 |
+
| 7.5685 | 11050 | 0.0503 | - |
|
676 |
+
| 7.6027 | 11100 | 0.0066 | - |
|
677 |
+
| 7.6370 | 11150 | 0.0087 | - |
|
678 |
+
| 7.6712 | 11200 | 0.0165 | - |
|
679 |
+
| 7.7055 | 11250 | 0.0164 | - |
|
680 |
+
| 7.7397 | 11300 | 0.019 | - |
|
681 |
+
| 7.7740 | 11350 | 0.0143 | - |
|
682 |
+
| 7.8082 | 11400 | 0.0282 | - |
|
683 |
+
| 7.8425 | 11450 | 0.0001 | - |
|
684 |
+
| 7.8767 | 11500 | 0.0 | - |
|
685 |
+
| 7.9110 | 11550 | 0.0049 | - |
|
686 |
+
| 7.9452 | 11600 | 0.0028 | - |
|
687 |
+
| 7.9795 | 11650 | 0.0001 | - |
|
688 |
+
| 8.0137 | 11700 | 0.0184 | - |
|
689 |
+
| 8.0479 | 11750 | 0.0038 | - |
|
690 |
+
| 8.0822 | 11800 | 0.0211 | - |
|
691 |
+
| 8.1164 | 11850 | 0.0217 | - |
|
692 |
+
| 8.1507 | 11900 | 0.0035 | - |
|
693 |
+
| 8.1849 | 11950 | 0.0039 | - |
|
694 |
+
| 8.2192 | 12000 | 0.0 | - |
|
695 |
+
| 8.2534 | 12050 | 0.0055 | - |
|
696 |
+
| 8.2877 | 12100 | 0.0027 | - |
|
697 |
+
| 8.3219 | 12150 | 0.0031 | - |
|
698 |
+
| 8.3562 | 12200 | 0.0271 | - |
|
699 |
+
| 8.3904 | 12250 | 0.0138 | - |
|
700 |
+
| 8.4247 | 12300 | 0.0413 | - |
|
701 |
+
| 8.4589 | 12350 | 0.0029 | - |
|
702 |
+
| 8.4932 | 12400 | 0.0161 | - |
|
703 |
+
| 8.5274 | 12450 | 0.0 | - |
|
704 |
+
| 8.5616 | 12500 | 0.0352 | - |
|
705 |
+
| 8.5959 | 12550 | 0.0018 | - |
|
706 |
+
| 8.6301 | 12600 | 0.0363 | - |
|
707 |
+
| 8.6644 | 12650 | 0.0136 | - |
|
708 |
+
| 8.6986 | 12700 | 0.0175 | - |
|
709 |
+
| 8.7329 | 12750 | 0.0045 | - |
|
710 |
+
| 8.7671 | 12800 | 0.036 | - |
|
711 |
+
| 8.8014 | 12850 | 0.0001 | - |
|
712 |
+
| 8.8356 | 12900 | 0.0188 | - |
|
713 |
+
| 8.8699 | 12950 | 0.0192 | - |
|
714 |
+
| 8.9041 | 13000 | 0.0059 | - |
|
715 |
+
| 8.9384 | 13050 | 0.0298 | - |
|
716 |
+
| 8.9726 | 13100 | 0.0026 | - |
|
717 |
+
| 9.0068 | 13150 | 0.0027 | - |
|
718 |
+
| 9.0411 | 13200 | 0.0017 | - |
|
719 |
+
| 9.0753 | 13250 | 0.0103 | - |
|
720 |
+
| 9.1096 | 13300 | 0.0061 | - |
|
721 |
+
| 9.1438 | 13350 | 0.0043 | - |
|
722 |
+
| 9.1781 | 13400 | 0.0189 | - |
|
723 |
+
| 9.2123 | 13450 | 0.0001 | - |
|
724 |
+
| 9.2466 | 13500 | 0.0363 | - |
|
725 |
+
| 9.2808 | 13550 | 0.0019 | - |
|
726 |
+
| 9.3151 | 13600 | 0.0141 | - |
|
727 |
+
| 9.3493 | 13650 | 0.0213 | - |
|
728 |
+
| 9.3836 | 13700 | 0.0029 | - |
|
729 |
+
| 9.4178 | 13750 | 0.0217 | - |
|
730 |
+
| 9.4521 | 13800 | 0.0218 | - |
|
731 |
+
| 9.4863 | 13850 | 0.0001 | - |
|
732 |
+
| 9.5205 | 13900 | 0.014 | - |
|
733 |
+
| 9.5548 | 13950 | 0.0213 | - |
|
734 |
+
| 9.5890 | 14000 | 0.0 | - |
|
735 |
+
| 9.6233 | 14050 | 0.004 | - |
|
736 |
+
| 9.6575 | 14100 | 0.0112 | - |
|
737 |
+
| 9.6918 | 14150 | 0.0077 | - |
|
738 |
+
| 9.7260 | 14200 | 0.0237 | - |
|
739 |
+
| 9.7603 | 14250 | 0.0202 | - |
|
740 |
+
| 9.7945 | 14300 | 0.003 | - |
|
741 |
+
| 9.8288 | 14350 | 0.002 | - |
|
742 |
+
| 9.8630 | 14400 | 0.0028 | - |
|
743 |
+
| 9.8973 | 14450 | 0.0398 | - |
|
744 |
+
| 9.9315 | 14500 | 0.0001 | - |
|
745 |
+
| 9.9658 | 14550 | 0.0185 | - |
|
746 |
+
| 10.0 | 14600 | 0.0001 | - |
|
747 |
+
| 10.0342 | 14650 | 0.0102 | - |
|
748 |
+
| 10.0685 | 14700 | 0.0164 | - |
|
749 |
+
| 10.1027 | 14750 | 0.0161 | - |
|
750 |
+
| 10.1370 | 14800 | 0.0221 | - |
|
751 |
+
| 10.1712 | 14850 | 0.0016 | - |
|
752 |
+
| 10.2055 | 14900 | 0.0151 | - |
|
753 |
+
| 10.2397 | 14950 | 0.0215 | - |
|
754 |
+
| 10.2740 | 15000 | 0.0021 | - |
|
755 |
+
| 10.3082 | 15050 | 0.0075 | - |
|
756 |
+
| 10.3425 | 15100 | 0.0001 | - |
|
757 |
+
| 10.3767 | 15150 | 0.0211 | - |
|
758 |
+
| 10.4110 | 15200 | 0.0022 | - |
|
759 |
+
| 10.4452 | 15250 | 0.0001 | - |
|
760 |
+
| 10.4795 | 15300 | 0.0348 | - |
|
761 |
+
| 10.5137 | 15350 | 0.0211 | - |
|
762 |
+
| 10.5479 | 15400 | 0.0193 | - |
|
763 |
+
| 10.5822 | 15450 | 0.0203 | - |
|
764 |
+
| 10.6164 | 15500 | 0.0001 | - |
|
765 |
+
| 10.6507 | 15550 | 0.0 | - |
|
766 |
+
| 10.6849 | 15600 | 0.0028 | - |
|
767 |
+
| 10.7192 | 15650 | 0.0025 | - |
|
768 |
+
| 10.7534 | 15700 | 0.003 | - |
|
769 |
+
| 10.7877 | 15750 | 0.0199 | - |
|
770 |
+
| 10.8219 | 15800 | 0.0238 | - |
|
771 |
+
| 10.8562 | 15850 | 0.0024 | - |
|
772 |
+
| 10.8904 | 15900 | 0.0149 | - |
|
773 |
+
| 10.9247 | 15950 | 0.0019 | - |
|
774 |
+
| 10.9589 | 16000 | 0.0001 | - |
|
775 |
+
| 10.9932 | 16050 | 0.0206 | - |
|
776 |
+
| 11.0274 | 16100 | 0.0187 | - |
|
777 |
+
| 11.0616 | 16150 | 0.0025 | - |
|
778 |
+
| 11.0959 | 16200 | 0.0001 | - |
|
779 |
+
| 11.1301 | 16250 | 0.0185 | - |
|
780 |
+
| 11.1644 | 16300 | 0.0476 | - |
|
781 |
+
| 11.1986 | 16350 | 0.0027 | - |
|
782 |
+
| 11.2329 | 16400 | 0.0064 | - |
|
783 |
+
| 11.2671 | 16450 | 0.0026 | - |
|
784 |
+
| 11.3014 | 16500 | 0.0055 | - |
|
785 |
+
| 11.3356 | 16550 | 0.0024 | - |
|
786 |
+
| 11.3699 | 16600 | 0.0059 | - |
|
787 |
+
| 11.4041 | 16650 | 0.0 | - |
|
788 |
+
| 11.4384 | 16700 | 0.0 | - |
|
789 |
+
| 11.4726 | 16750 | 0.0333 | - |
|
790 |
+
| 11.5068 | 16800 | 0.0231 | - |
|
791 |
+
| 11.5411 | 16850 | 0.0084 | - |
|
792 |
+
| 11.5753 | 16900 | 0.0001 | - |
|
793 |
+
| 11.6096 | 16950 | 0.0173 | - |
|
794 |
+
| 11.6438 | 17000 | 0.0207 | - |
|
795 |
+
| 11.6781 | 17050 | 0.0162 | - |
|
796 |
+
| 11.7123 | 17100 | 0.0071 | - |
|
797 |
+
| 11.7466 | 17150 | 0.0049 | - |
|
798 |
+
| 11.7808 | 17200 | 0.0025 | - |
|
799 |
+
| 11.8151 | 17250 | 0.011 | - |
|
800 |
+
| 11.8493 | 17300 | 0.035 | - |
|
801 |
+
| 11.8836 | 17350 | 0.0168 | - |
|
802 |
+
| 11.9178 | 17400 | 0.0085 | - |
|
803 |
+
| 11.9521 | 17450 | 0.0028 | - |
|
804 |
+
| 11.9863 | 17500 | 0.0 | - |
|
805 |
+
| 12.0205 | 17550 | 0.0239 | - |
|
806 |
+
| 12.0548 | 17600 | 0.0026 | - |
|
807 |
+
| 12.0890 | 17650 | 0.008 | - |
|
808 |
+
| 12.1233 | 17700 | 0.0165 | - |
|
809 |
+
| 12.1575 | 17750 | 0.0027 | - |
|
810 |
+
| 12.1918 | 17800 | 0.0069 | - |
|
811 |
+
| 12.2260 | 17850 | 0.0215 | - |
|
812 |
+
| 12.2603 | 17900 | 0.0236 | - |
|
813 |
+
| 12.2945 | 17950 | 0.0001 | - |
|
814 |
+
| 12.3288 | 18000 | 0.0001 | - |
|
815 |
+
| 12.3630 | 18050 | 0.0025 | - |
|
816 |
+
| 12.3973 | 18100 | 0.0026 | - |
|
817 |
+
| 12.4315 | 18150 | 0.0164 | - |
|
818 |
+
| 12.4658 | 18200 | 0.035 | - |
|
819 |
+
| 12.5 | 18250 | 0.0032 | - |
|
820 |
+
| 12.5342 | 18300 | 0.0 | - |
|
821 |
+
| 12.5685 | 18350 | 0.0343 | - |
|
822 |
+
| 12.6027 | 18400 | 0.0024 | - |
|
823 |
+
| 12.6370 | 18450 | 0.0025 | - |
|
824 |
+
| 12.6712 | 18500 | 0.0202 | - |
|
825 |
+
| 12.7055 | 18550 | 0.0192 | - |
|
826 |
+
| 12.7397 | 18600 | 0.017 | - |
|
827 |
+
| 12.7740 | 18650 | 0.02 | - |
|
828 |
+
| 12.8082 | 18700 | 0.0321 | - |
|
829 |
+
| 12.8425 | 18750 | 0.0001 | - |
|
830 |
+
| 12.8767 | 18800 | 0.0023 | - |
|
831 |
+
| 12.9110 | 18850 | 0.0028 | - |
|
832 |
+
| 12.9452 | 18900 | 0.0 | - |
|
833 |
+
| 12.9795 | 18950 | 0.0 | - |
|
834 |
+
| 13.0137 | 19000 | 0.0267 | - |
|
835 |
+
| 13.0479 | 19050 | 0.0056 | - |
|
836 |
+
| 13.0822 | 19100 | 0.0219 | - |
|
837 |
+
| 13.1164 | 19150 | 0.0184 | - |
|
838 |
+
| 13.1507 | 19200 | 0.0028 | - |
|
839 |
+
| 13.1849 | 19250 | 0.0 | - |
|
840 |
+
| 13.2192 | 19300 | 0.005 | - |
|
841 |
+
| 13.2534 | 19350 | 0.0056 | - |
|
842 |
+
| 13.2877 | 19400 | 0.0033 | - |
|
843 |
+
| 13.3219 | 19450 | 0.0 | - |
|
844 |
+
| 13.3562 | 19500 | 0.034 | - |
|
845 |
+
| 13.3904 | 19550 | 0.0173 | - |
|
846 |
+
| 13.4247 | 19600 | 0.033 | - |
|
847 |
+
| 13.4589 | 19650 | 0.0025 | - |
|
848 |
+
| 13.4932 | 19700 | 0.0279 | - |
|
849 |
+
| 13.5274 | 19750 | 0.0052 | - |
|
850 |
+
| 13.5616 | 19800 | 0.0351 | - |
|
851 |
+
| 13.5959 | 19850 | 0.0 | - |
|
852 |
+
| 13.6301 | 19900 | 0.035 | - |
|
853 |
+
| 13.6644 | 19950 | 0.0069 | - |
|
854 |
+
| 13.6986 | 20000 | 0.0227 | - |
|
855 |
+
| 13.7329 | 20050 | 0.0 | - |
|
856 |
+
| 13.7671 | 20100 | 0.0347 | - |
|
857 |
+
| 13.8014 | 20150 | 0.0 | - |
|
858 |
+
| 13.8356 | 20200 | 0.0217 | - |
|
859 |
+
| 13.8699 | 20250 | 0.02 | - |
|
860 |
+
| 13.9041 | 20300 | 0.0 | - |
|
861 |
+
| 13.9384 | 20350 | 0.0393 | - |
|
862 |
+
| 13.9726 | 20400 | 0.0053 | - |
|
863 |
+
| 14.0068 | 20450 | 0.0026 | - |
|
864 |
+
| 14.0411 | 20500 | 0.0025 | - |
|
865 |
+
| 14.0753 | 20550 | 0.0049 | - |
|
866 |
+
| 14.1096 | 20600 | 0.0 | - |
|
867 |
+
| 14.1438 | 20650 | 0.0 | - |
|
868 |
+
| 14.1781 | 20700 | 0.0184 | - |
|
869 |
+
| 14.2123 | 20750 | 0.0029 | - |
|
870 |
+
| 14.2466 | 20800 | 0.0313 | - |
|
871 |
+
| 14.2808 | 20850 | 0.0 | - |
|
872 |
+
| 14.3151 | 20900 | 0.0051 | - |
|
873 |
+
| 14.3493 | 20950 | 0.0157 | - |
|
874 |
+
| 14.3836 | 21000 | 0.0059 | - |
|
875 |
+
| 14.4178 | 21050 | 0.0182 | - |
|
876 |
+
| 14.4521 | 21100 | 0.0242 | - |
|
877 |
+
| 14.4863 | 21150 | 0.0024 | - |
|
878 |
+
| 14.5205 | 21200 | 0.026 | - |
|
879 |
+
| 14.5548 | 21250 | 0.0211 | - |
|
880 |
+
| 14.5890 | 21300 | 0.0053 | - |
|
881 |
+
| 14.6233 | 21350 | 0.0 | - |
|
882 |
+
| 14.6575 | 21400 | 0.0 | - |
|
883 |
+
| 14.6918 | 21450 | 0.0034 | - |
|
884 |
+
| 14.7260 | 21500 | 0.0239 | - |
|
885 |
+
| 14.7603 | 21550 | 0.0209 | - |
|
886 |
+
| 14.7945 | 21600 | 0.0028 | - |
|
887 |
+
| 14.8288 | 21650 | 0.0 | - |
|
888 |
+
| 14.8630 | 21700 | 0.0022 | - |
|
889 |
+
| 14.8973 | 21750 | 0.0364 | - |
|
890 |
+
| 14.9315 | 21800 | 0.0052 | - |
|
891 |
+
| 14.9658 | 21850 | 0.0239 | - |
|
892 |
+
| 15.0 | 21900 | 0.0 | - |
|
893 |
+
|
894 |
+
### Framework Versions
|
895 |
+
- Python: 3.10.12
|
896 |
+
- SetFit: 1.1.0.dev0
|
897 |
+
- Sentence Transformers: 2.6.1
|
898 |
+
- Transformers: 4.38.2
|
899 |
+
- PyTorch: 2.2.1+cu121
|
900 |
+
- Datasets: 2.18.0
|
901 |
+
- Tokenizers: 0.15.2
|
902 |
+
|
903 |
+
## Citation
|
904 |
+
|
905 |
+
### BibTeX
|
906 |
+
```bibtex
|
907 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
908 |
+
doi = {10.48550/ARXIV.2209.11055},
|
909 |
+
url = {https://arxiv.org/abs/2209.11055},
|
910 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
911 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
912 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
913 |
+
publisher = {arXiv},
|
914 |
+
year = {2022},
|
915 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
916 |
+
}
|
917 |
+
```
|
918 |
+
|
919 |
+
<!--
|
920 |
+
## Glossary
|
921 |
+
|
922 |
+
*Clearly define terms in order to be accessible across audiences.*
|
923 |
+
-->
|
924 |
+
|
925 |
+
<!--
|
926 |
+
## Model Card Authors
|
927 |
+
|
928 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
929 |
+
-->
|
930 |
+
|
931 |
+
<!--
|
932 |
+
## Model Card Contact
|
933 |
+
|
934 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
935 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "sentence-transformers/all-MiniLM-L6-v2",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 384,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 1536,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "bert",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 6,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"position_embedding_type": "absolute",
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.38.2",
|
23 |
+
"type_vocab_size": 2,
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 30522
|
26 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.0.0",
|
4 |
+
"transformers": "4.6.1",
|
5 |
+
"pytorch": "1.8.1"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null
|
9 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"normalize_embeddings": false,
|
3 |
+
"labels": [
|
4 |
+
"Synonyms",
|
5 |
+
"Copying expression",
|
6 |
+
"Tense semantics",
|
7 |
+
"Word form transmission",
|
8 |
+
"Transliteration"
|
9 |
+
]
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:26b0fddd74b0899b390a598765c73700fdfe8d619ad317d843954fc86841c8f2
|
3 |
+
size 90864192
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5f43af2cb80d4fbc9d1a36f593e819a6d637f857a4b526d0041a39cffe8676e0
|
3 |
+
size 16687
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 256,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"max_length": 128,
|
50 |
+
"model_max_length": 512,
|
51 |
+
"never_split": null,
|
52 |
+
"pad_to_multiple_of": null,
|
53 |
+
"pad_token": "[PAD]",
|
54 |
+
"pad_token_type_id": 0,
|
55 |
+
"padding_side": "right",
|
56 |
+
"sep_token": "[SEP]",
|
57 |
+
"stride": 0,
|
58 |
+
"strip_accents": null,
|
59 |
+
"tokenize_chinese_chars": true,
|
60 |
+
"tokenizer_class": "BertTokenizer",
|
61 |
+
"truncation_side": "right",
|
62 |
+
"truncation_strategy": "longest_first",
|
63 |
+
"unk_token": "[UNK]"
|
64 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|