File size: 6,483 Bytes
c1340dd 16a11a1 c1340dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
---
library_name: transformers
tags:
- turkish
- general tasks
- RAG
- SFT
license: apache-2.0
language:
- tr
- en
pipeline_tag: text2text-generation
base_model: mistralai/Mistral-7B-v0.3
metrics:
- ARC (25-Shot)
model-index:
- name: cymist-2-v03-SFT
results:
- task:
type: text-generation
metrics:
- name: ARC (25-Shot)
type: arc_challenge (25-Shot)
value: 59.12
- name: Hellaswag (10-Shot)
type: Hellaswag (10-Shot)
value: 82.56
- name: TruthfulQA
type: TruthfulQA
value: 52.12
- name: GSM8K (5-Shot)
type: GSM8K (5-Shot)
value: 36.61
- name: Winogrande (5-Shot)
type: Winogrande (5-Shot)
value: 77.43
- name: MMLU (5-Shot)
type: MMLU (5-Shot)
value: 62.65
---
**Exllamav2** quant (**exl2** / **3.5 bpw**) made with ExLlamaV2 v0.0.21
Other EXL2 quants:
| **Quant** | **Model Size** | **lm_head** |
| ----- | ---------- | ------- |
|<center>**[2.2](https://huggingface.co/Zoyd/cypienai_cymist-2-v03-SFT-2_2bpw_exl2)**</center> | <center>2208 MB</center> | <center>6</center> |
|<center>**[2.5](https://huggingface.co/Zoyd/cypienai_cymist-2-v03-SFT-2_5bpw_exl2)**</center> | <center>2438 MB</center> | <center>6</center> |
|<center>**[3.0](https://huggingface.co/Zoyd/cypienai_cymist-2-v03-SFT-3_0bpw_exl2)**</center> | <center>2854 MB</center> | <center>6</center> |
|<center>**[3.5](https://huggingface.co/Zoyd/cypienai_cymist-2-v03-SFT-3_5bpw_exl2)**</center> | <center>3269 MB</center> | <center>6</center> |
|<center>**[3.75](https://huggingface.co/Zoyd/cypienai_cymist-2-v03-SFT-3_75bpw_exl2)**</center> | <center>3477 MB</center> | <center>6</center> |
|<center>**[4.0](https://huggingface.co/Zoyd/cypienai_cymist-2-v03-SFT-4_0bpw_exl2)**</center> | <center>3685 MB</center> | <center>6</center> |
|<center>**[4.25](https://huggingface.co/Zoyd/cypienai_cymist-2-v03-SFT-4_25bpw_exl2)**</center> | <center>3892 MB</center> | <center>6</center> |
|<center>**[5.0](https://huggingface.co/Zoyd/cypienai_cymist-2-v03-SFT-5_0bpw_exl2)**</center> | <center>4515 MB</center> | <center>6</center> |
|<center>**[6.0](https://huggingface.co/Zoyd/cypienai_cymist-2-v03-SFT-6_0bpw_exl2)**</center> | <center>5358 MB</center> | <center>8</center> |
|<center>**[6.5](https://huggingface.co/Zoyd/cypienai_cymist-2-v03-SFT-6_5bpw_exl2)**</center> | <center>5789 MB</center> | <center>8</center> |
|<center>**[8.0](https://huggingface.co/Zoyd/cypienai_cymist-2-v03-SFT-8_0bpw_exl2)**</center> | <center>6655 MB</center> | <center>8</center> |
# Model Card for Cymist2-v0.3-SFT
### Model Description
Cymist2-v0.3 is a cutting-edge language model developed by the Cypien AI Team, optimized for text-generation tasks. The model leverages the transformers library and is available under the Apache-2.0 license.
- **Developed by:** Cypien AI Team
- **Model type:** Language Model for Text-Generation
- **Language(s) (NLP):** Turkish, English
- **License:** Apache-2.0
- **Finetuned from model**: mistralai/Mistral-7B-v0.3
### Direct Use
This model is designed for direct use in general applications requiring natural language understanding, RAG and text-generation capabilities. It can be integrated into chatbots, virtual assistants, and other AI systems where understanding and generating human-like responses are essential.
## Bias, Risks, and Limitations
The model, like all AI models, may inherit biases from its training data. Users should be aware of these potential biases and consider them when integrating the model into applications.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "cypienai/cymist2-v03-SFT"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.pad_token_id = tokenizer.eos_token_id
```
## Use Flash-Attention 2 to further speed-up generation
First make sure to install flash-attn. Refer to the original repository of Flash Attention regarding that package installation. Simply change the snippet above with:
```python
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2"
)
```
# Example usage
Here's the prompt template for this model:
```python
question="Yenilenebilir gıdalar nelerdir ?"
prompt= f"[INST] {question} [/INST]"
with torch.inference_mode():
input_ids = tokenizer(prompt, return_tensors="pt").to(device)
output = model.generate(**input_ids, max_new_tokens=8096)
decoded_output = tokenizer.decode(output[0], skip_special_tokens=False)
print(decoded_output)
```
## Training Details
### Training Data
The model was trained on a diverse set of Turkish & English language sources, encompassing a wide range of topics to ensure comprehensive language understanding.
### Training Procedure
#### Preprocessing
The training data underwent standard NLP preprocessing steps, including tokenization, normalization, and possibly data augmentation to enhance the model's robustness.
## Environmental Impact
The training of Cymist2-v0.3-SFT was conducted with a focus on minimizing carbon emissions. Detailed carbon emission statistics will be provided based on the Machine Learning Impact calculator, considering hardware type, usage hours, cloud provider, compute region, and total emissions.
0.9 kg of CO2eq on 12 hours H100 utilization
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
## Technical Specifications
More detailed technical specifications, including model architecture, compute infrastructure, hardware, and software, will be provided to offer insights into the model's operational context.
## Citation
When citing this model in your research, please refer to this model card for information about the model's development and capabilities.
## Glossary
A glossary section can be added to define specific terms and calculations related to the model, ensuring clarity for all potential users.
## More Information [optional]
For more information or inquiries about the model, please contact the Cypien AI Team.
## Model Card Contact
[email protected]
CypienAI team
|