File size: 2,297 Bytes
95d95d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da1e5ae
95d95d9
 
da1e5ae
95d95d9
 
da1e5ae
95d95d9
 
da1e5ae
95d95d9
 
 
 
 
 
 
 
 
da1e5ae
 
 
 
 
95d95d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da1e5ae
 
 
 
95d95d9
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
---
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: msi-resnet-18
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: validation
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.6336664802907465
    - name: F1
      type: f1
      value: 0.5299313932110667
    - name: Precision
      type: precision
      value: 0.5977139389034999
    - name: Recall
      type: recall
      value: 0.4759565042287555
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# msi-resnet-18

This model was trained from scratch on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6854
- Accuracy: 0.6337
- F1: 0.5299
- Precision: 0.5977
- Recall: 0.4760

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 4

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.499         | 1.0   | 2015 | 0.7028          | 0.6189   | 0.4730 | 0.5911    | 0.3942 |
| 0.4738        | 2.0   | 4031 | 0.7003          | 0.6268   | 0.4981 | 0.5979    | 0.4268 |
| 0.4788        | 3.0   | 6047 | 0.7195          | 0.6148   | 0.4517 | 0.5906    | 0.3657 |
| 0.4523        | 4.0   | 8060 | 0.6854          | 0.6337   | 0.5299 | 0.5977    | 0.4760 |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.0.1+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0