File size: 2,297 Bytes
95d95d9 da1e5ae 95d95d9 da1e5ae 95d95d9 da1e5ae 95d95d9 da1e5ae 95d95d9 da1e5ae 95d95d9 da1e5ae 95d95d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
---
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: msi-resnet-18
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: validation
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.6336664802907465
- name: F1
type: f1
value: 0.5299313932110667
- name: Precision
type: precision
value: 0.5977139389034999
- name: Recall
type: recall
value: 0.4759565042287555
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# msi-resnet-18
This model was trained from scratch on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6854
- Accuracy: 0.6337
- F1: 0.5299
- Precision: 0.5977
- Recall: 0.4760
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.499 | 1.0 | 2015 | 0.7028 | 0.6189 | 0.4730 | 0.5911 | 0.3942 |
| 0.4738 | 2.0 | 4031 | 0.7003 | 0.6268 | 0.4981 | 0.5979 | 0.4268 |
| 0.4788 | 3.0 | 6047 | 0.7195 | 0.6148 | 0.4517 | 0.5906 | 0.3657 |
| 0.4523 | 4.0 | 8060 | 0.6854 | 0.6337 | 0.5299 | 0.5977 | 0.4760 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.0.1+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
|