File size: 2,863 Bytes
5da6c85 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
---
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: msi-vit-small
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: validation
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.599979032708974
- name: F1
type: f1
value: 0.2863021385373153
- name: Precision
type: precision
value: 0.6335540838852097
- name: Recall
type: recall
value: 0.18493757551349174
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# msi-vit-small
This model was trained from scratch on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5796
- Accuracy: 0.6000
- F1: 0.2863
- Precision: 0.6336
- Recall: 0.1849
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.3142 | 1.0 | 1008 | 0.8965 | 0.6329 | 0.5060 | 0.6079 | 0.4333 |
| 0.2063 | 2.0 | 2016 | 1.5189 | 0.6062 | 0.3005 | 0.6550 | 0.1950 |
| 0.19 | 3.0 | 3024 | 1.4818 | 0.6270 | 0.3399 | 0.7318 | 0.2213 |
| 0.1718 | 4.0 | 4032 | 1.2353 | 0.6046 | 0.4096 | 0.5816 | 0.3161 |
| 0.161 | 5.0 | 5040 | 1.5953 | 0.6342 | 0.3508 | 0.7623 | 0.2278 |
| 0.1805 | 6.0 | 6048 | 1.0789 | 0.6552 | 0.4647 | 0.7119 | 0.3449 |
| 0.1619 | 7.0 | 7056 | 1.2646 | 0.5479 | 0.2591 | 0.4484 | 0.1822 |
| 0.1655 | 8.0 | 8064 | 1.7155 | 0.5910 | 0.2654 | 0.6011 | 0.1703 |
| 0.17 | 9.0 | 9072 | 2.1142 | 0.5797 | 0.1729 | 0.5913 | 0.1012 |
| 0.1703 | 10.0 | 10080 | 1.5796 | 0.6000 | 0.2863 | 0.6336 | 0.1849 |
### Framework versions
- Transformers 4.36.0
- Pytorch 2.0.1+cu117
- Datasets 2.15.0
- Tokenizers 0.15.0
|