aari1995 commited on
Commit
4eccf7a
·
verified ·
1 Parent(s): 949f068

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,1146 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - de
4
+ - en
5
+ - es
6
+ - fr
7
+ - it
8
+ - nl
9
+ - pl
10
+ - pt
11
+ - ru
12
+ - zh
13
+ library_name: sentence-transformers
14
+ tags:
15
+ - sentence-transformers
16
+ - sentence-similarity
17
+ - feature-extraction
18
+ - dataset_size:10K<n<100K
19
+ - loss:MatryoshkaLoss
20
+ - loss:CosineSimilarityLoss
21
+ base_model: aari1995/gbert-large-2-cls-nlisim
22
+ metrics:
23
+ - pearson_cosine
24
+ - spearman_cosine
25
+ - pearson_manhattan
26
+ - spearman_manhattan
27
+ - pearson_euclidean
28
+ - spearman_euclidean
29
+ - pearson_dot
30
+ - spearman_dot
31
+ - pearson_max
32
+ - spearman_max
33
+ widget:
34
+ - source_sentence: Ein Mann spricht.
35
+ sentences:
36
+ - Ein Mann spricht in ein Mikrofon.
37
+ - Der Mann spielt auf den Tastaturen.
38
+ - Zwei Mädchen gehen im Ozean spazieren.
39
+ - source_sentence: Eine Flagge weht.
40
+ sentences:
41
+ - Die Flagge bewegte sich in der Luft.
42
+ - Ein Hund fährt auf einem Skateboard.
43
+ - Zwei Frauen sitzen in einem Cafe.
44
+ - source_sentence: Ein Mann übt Boxen
45
+ sentences:
46
+ - Ein Affe praktiziert Kampfsportarten.
47
+ - Eine Person faltet ein Blatt Papier.
48
+ - Eine Frau geht mit ihrem Hund spazieren.
49
+ - source_sentence: Das Tor ist gelb.
50
+ sentences:
51
+ - Das Tor ist blau.
52
+ - Die Frau hält die Hände des Mannes.
53
+ - NATO-Soldat bei afghanischem Angriff getötet
54
+ - source_sentence: Zwei Frauen laufen.
55
+ sentences:
56
+ - Frauen laufen.
57
+ - Die Frau prüft die Augen des Mannes.
58
+ - Ein Mann ist auf einem Dach
59
+ pipeline_tag: sentence-similarity
60
+ model-index:
61
+ - name: SentenceTransformer based on aari1995/gbert-large-2-cls-nlisim
62
+ results:
63
+ - task:
64
+ type: semantic-similarity
65
+ name: Semantic Similarity
66
+ dataset:
67
+ name: sts dev 1024
68
+ type: sts-dev-1024
69
+ metrics:
70
+ - type: pearson_cosine
71
+ value: 0.8417806877288009
72
+ name: Pearson Cosine
73
+ - type: spearman_cosine
74
+ value: 0.8452891310343582
75
+ name: Spearman Cosine
76
+ - type: pearson_manhattan
77
+ value: 0.8418749526406495
78
+ name: Pearson Manhattan
79
+ - type: spearman_manhattan
80
+ value: 0.8450348906331776
81
+ name: Spearman Manhattan
82
+ - type: pearson_euclidean
83
+ value: 0.8422615095001257
84
+ name: Pearson Euclidean
85
+ - type: spearman_euclidean
86
+ value: 0.8453390990427703
87
+ name: Spearman Euclidean
88
+ - type: pearson_dot
89
+ value: 0.8416625079549063
90
+ name: Pearson Dot
91
+ - type: spearman_dot
92
+ value: 0.8450616171323844
93
+ name: Spearman Dot
94
+ - type: pearson_max
95
+ value: 0.8422615095001257
96
+ name: Pearson Max
97
+ - type: spearman_max
98
+ value: 0.8453390990427703
99
+ name: Spearman Max
100
+ - task:
101
+ type: semantic-similarity
102
+ name: Semantic Similarity
103
+ dataset:
104
+ name: sts dev 768
105
+ type: sts-dev-768
106
+ metrics:
107
+ - type: pearson_cosine
108
+ value: 0.8418107096367227
109
+ name: Pearson Cosine
110
+ - type: spearman_cosine
111
+ value: 0.8453863409322975
112
+ name: Spearman Cosine
113
+ - type: pearson_manhattan
114
+ value: 0.8418527770289471
115
+ name: Pearson Manhattan
116
+ - type: spearman_manhattan
117
+ value: 0.8448328869253576
118
+ name: Spearman Manhattan
119
+ - type: pearson_euclidean
120
+ value: 0.8422791953749277
121
+ name: Pearson Euclidean
122
+ - type: spearman_euclidean
123
+ value: 0.8451547857394669
124
+ name: Spearman Euclidean
125
+ - type: pearson_dot
126
+ value: 0.8417682812591724
127
+ name: Pearson Dot
128
+ - type: spearman_dot
129
+ value: 0.8446927200809794
130
+ name: Spearman Dot
131
+ - type: pearson_max
132
+ value: 0.8422791953749277
133
+ name: Pearson Max
134
+ - type: spearman_max
135
+ value: 0.8453863409322975
136
+ name: Spearman Max
137
+ - task:
138
+ type: semantic-similarity
139
+ name: Semantic Similarity
140
+ dataset:
141
+ name: sts dev 512
142
+ type: sts-dev-512
143
+ metrics:
144
+ - type: pearson_cosine
145
+ value: 0.8394808864309438
146
+ name: Pearson Cosine
147
+ - type: spearman_cosine
148
+ value: 0.8437551103291275
149
+ name: Spearman Cosine
150
+ - type: pearson_manhattan
151
+ value: 0.8420246416513741
152
+ name: Pearson Manhattan
153
+ - type: spearman_manhattan
154
+ value: 0.8447335398769396
155
+ name: Spearman Manhattan
156
+ - type: pearson_euclidean
157
+ value: 0.8422722079216611
158
+ name: Pearson Euclidean
159
+ - type: spearman_euclidean
160
+ value: 0.8448909261141044
161
+ name: Spearman Euclidean
162
+ - type: pearson_dot
163
+ value: 0.8358204287638725
164
+ name: Pearson Dot
165
+ - type: spearman_dot
166
+ value: 0.8380004733308642
167
+ name: Spearman Dot
168
+ - type: pearson_max
169
+ value: 0.8422722079216611
170
+ name: Pearson Max
171
+ - type: spearman_max
172
+ value: 0.8448909261141044
173
+ name: Spearman Max
174
+ - task:
175
+ type: semantic-similarity
176
+ name: Semantic Similarity
177
+ dataset:
178
+ name: sts dev 256
179
+ type: sts-dev-256
180
+ metrics:
181
+ - type: pearson_cosine
182
+ value: 0.833879413726309
183
+ name: Pearson Cosine
184
+ - type: spearman_cosine
185
+ value: 0.8392439788855341
186
+ name: Spearman Cosine
187
+ - type: pearson_manhattan
188
+ value: 0.8379618268497928
189
+ name: Pearson Manhattan
190
+ - type: spearman_manhattan
191
+ value: 0.839860826315925
192
+ name: Spearman Manhattan
193
+ - type: pearson_euclidean
194
+ value: 0.838931461279174
195
+ name: Pearson Euclidean
196
+ - type: spearman_euclidean
197
+ value: 0.8404811150299943
198
+ name: Spearman Euclidean
199
+ - type: pearson_dot
200
+ value: 0.8230557648139373
201
+ name: Pearson Dot
202
+ - type: spearman_dot
203
+ value: 0.8242532718299653
204
+ name: Spearman Dot
205
+ - type: pearson_max
206
+ value: 0.838931461279174
207
+ name: Pearson Max
208
+ - type: spearman_max
209
+ value: 0.8404811150299943
210
+ name: Spearman Max
211
+ - task:
212
+ type: semantic-similarity
213
+ name: Semantic Similarity
214
+ dataset:
215
+ name: sts dev 128
216
+ type: sts-dev-128
217
+ metrics:
218
+ - type: pearson_cosine
219
+ value: 0.8253967606033702
220
+ name: Pearson Cosine
221
+ - type: spearman_cosine
222
+ value: 0.8335750690073012
223
+ name: Spearman Cosine
224
+ - type: pearson_manhattan
225
+ value: 0.8341588626988476
226
+ name: Pearson Manhattan
227
+ - type: spearman_manhattan
228
+ value: 0.8343994326050966
229
+ name: Spearman Manhattan
230
+ - type: pearson_euclidean
231
+ value: 0.8355263623880292
232
+ name: Pearson Euclidean
233
+ - type: spearman_euclidean
234
+ value: 0.8358857095028451
235
+ name: Spearman Euclidean
236
+ - type: pearson_dot
237
+ value: 0.8035163216908426
238
+ name: Pearson Dot
239
+ - type: spearman_dot
240
+ value: 0.8050271037746011
241
+ name: Spearman Dot
242
+ - type: pearson_max
243
+ value: 0.8355263623880292
244
+ name: Pearson Max
245
+ - type: spearman_max
246
+ value: 0.8358857095028451
247
+ name: Spearman Max
248
+ - task:
249
+ type: semantic-similarity
250
+ name: Semantic Similarity
251
+ dataset:
252
+ name: sts dev 64
253
+ type: sts-dev-64
254
+ metrics:
255
+ - type: pearson_cosine
256
+ value: 0.8150661334039712
257
+ name: Pearson Cosine
258
+ - type: spearman_cosine
259
+ value: 0.8265558538619309
260
+ name: Spearman Cosine
261
+ - type: pearson_manhattan
262
+ value: 0.8241988539394505
263
+ name: Pearson Manhattan
264
+ - type: spearman_manhattan
265
+ value: 0.8238763145175863
266
+ name: Spearman Manhattan
267
+ - type: pearson_euclidean
268
+ value: 0.8274925218859535
269
+ name: Pearson Euclidean
270
+ - type: spearman_euclidean
271
+ value: 0.8270778062044848
272
+ name: Spearman Euclidean
273
+ - type: pearson_dot
274
+ value: 0.7773847317840161
275
+ name: Pearson Dot
276
+ - type: spearman_dot
277
+ value: 0.7790338242936304
278
+ name: Spearman Dot
279
+ - type: pearson_max
280
+ value: 0.8274925218859535
281
+ name: Pearson Max
282
+ - type: spearman_max
283
+ value: 0.8270778062044848
284
+ name: Spearman Max
285
+ - task:
286
+ type: semantic-similarity
287
+ name: Semantic Similarity
288
+ dataset:
289
+ name: sts test 1024
290
+ type: sts-test-1024
291
+ metrics:
292
+ - type: pearson_cosine
293
+ value: 0.8130772714952826
294
+ name: Pearson Cosine
295
+ - type: spearman_cosine
296
+ value: 0.8188901246173036
297
+ name: Spearman Cosine
298
+ - type: pearson_manhattan
299
+ value: 0.8208715312691268
300
+ name: Pearson Manhattan
301
+ - type: spearman_manhattan
302
+ value: 0.8195095089412118
303
+ name: Spearman Manhattan
304
+ - type: pearson_euclidean
305
+ value: 0.820344720619671
306
+ name: Pearson Euclidean
307
+ - type: spearman_euclidean
308
+ value: 0.8189263018901494
309
+ name: Spearman Euclidean
310
+ - type: pearson_dot
311
+ value: 0.8127924456922464
312
+ name: Pearson Dot
313
+ - type: spearman_dot
314
+ value: 0.8185815083131535
315
+ name: Spearman Dot
316
+ - type: pearson_max
317
+ value: 0.8208715312691268
318
+ name: Pearson Max
319
+ - type: spearman_max
320
+ value: 0.8195095089412118
321
+ name: Spearman Max
322
+ - task:
323
+ type: semantic-similarity
324
+ name: Semantic Similarity
325
+ dataset:
326
+ name: sts test 768
327
+ type: sts-test-768
328
+ metrics:
329
+ - type: pearson_cosine
330
+ value: 0.8121757739236393
331
+ name: Pearson Cosine
332
+ - type: spearman_cosine
333
+ value: 0.8182913347635533
334
+ name: Spearman Cosine
335
+ - type: pearson_manhattan
336
+ value: 0.820604714791802
337
+ name: Pearson Manhattan
338
+ - type: spearman_manhattan
339
+ value: 0.8190481839997107
340
+ name: Spearman Manhattan
341
+ - type: pearson_euclidean
342
+ value: 0.8197462057663948
343
+ name: Pearson Euclidean
344
+ - type: spearman_euclidean
345
+ value: 0.8183157116237637
346
+ name: Spearman Euclidean
347
+ - type: pearson_dot
348
+ value: 0.8106698462984598
349
+ name: Pearson Dot
350
+ - type: spearman_dot
351
+ value: 0.8148932181769889
352
+ name: Spearman Dot
353
+ - type: pearson_max
354
+ value: 0.820604714791802
355
+ name: Pearson Max
356
+ - type: spearman_max
357
+ value: 0.8190481839997107
358
+ name: Spearman Max
359
+ - task:
360
+ type: semantic-similarity
361
+ name: Semantic Similarity
362
+ dataset:
363
+ name: sts test 512
364
+ type: sts-test-512
365
+ metrics:
366
+ - type: pearson_cosine
367
+ value: 0.8096452235754106
368
+ name: Pearson Cosine
369
+ - type: spearman_cosine
370
+ value: 0.816264314810491
371
+ name: Spearman Cosine
372
+ - type: pearson_manhattan
373
+ value: 0.8180021560255247
374
+ name: Pearson Manhattan
375
+ - type: spearman_manhattan
376
+ value: 0.8165486306356095
377
+ name: Spearman Manhattan
378
+ - type: pearson_euclidean
379
+ value: 0.8173829404008947
380
+ name: Pearson Euclidean
381
+ - type: spearman_euclidean
382
+ value: 0.8158592878546184
383
+ name: Spearman Euclidean
384
+ - type: pearson_dot
385
+ value: 0.8059176831913651
386
+ name: Pearson Dot
387
+ - type: spearman_dot
388
+ value: 0.8088972406630007
389
+ name: Spearman Dot
390
+ - type: pearson_max
391
+ value: 0.8180021560255247
392
+ name: Pearson Max
393
+ - type: spearman_max
394
+ value: 0.8165486306356095
395
+ name: Spearman Max
396
+ - task:
397
+ type: semantic-similarity
398
+ name: Semantic Similarity
399
+ dataset:
400
+ name: sts test 256
401
+ type: sts-test-256
402
+ metrics:
403
+ - type: pearson_cosine
404
+ value: 0.8070921035712145
405
+ name: Pearson Cosine
406
+ - type: spearman_cosine
407
+ value: 0.8150266310280979
408
+ name: Spearman Cosine
409
+ - type: pearson_manhattan
410
+ value: 0.818409081545237
411
+ name: Pearson Manhattan
412
+ - type: spearman_manhattan
413
+ value: 0.8167245415653657
414
+ name: Spearman Manhattan
415
+ - type: pearson_euclidean
416
+ value: 0.8176811220335696
417
+ name: Pearson Euclidean
418
+ - type: spearman_euclidean
419
+ value: 0.8158894222194816
420
+ name: Spearman Euclidean
421
+ - type: pearson_dot
422
+ value: 0.795483328805793
423
+ name: Pearson Dot
424
+ - type: spearman_dot
425
+ value: 0.7956062163122977
426
+ name: Spearman Dot
427
+ - type: pearson_max
428
+ value: 0.818409081545237
429
+ name: Pearson Max
430
+ - type: spearman_max
431
+ value: 0.8167245415653657
432
+ name: Spearman Max
433
+ - task:
434
+ type: semantic-similarity
435
+ name: Semantic Similarity
436
+ dataset:
437
+ name: sts test 128
438
+ type: sts-test-128
439
+ metrics:
440
+ - type: pearson_cosine
441
+ value: 0.7974039089035316
442
+ name: Pearson Cosine
443
+ - type: spearman_cosine
444
+ value: 0.8093067652791092
445
+ name: Spearman Cosine
446
+ - type: pearson_manhattan
447
+ value: 0.8125792968401813
448
+ name: Pearson Manhattan
449
+ - type: spearman_manhattan
450
+ value: 0.8121486514324944
451
+ name: Spearman Manhattan
452
+ - type: pearson_euclidean
453
+ value: 0.8119102513178551
454
+ name: Pearson Euclidean
455
+ - type: spearman_euclidean
456
+ value: 0.811152531425261
457
+ name: Spearman Euclidean
458
+ - type: pearson_dot
459
+ value: 0.7739555890021923
460
+ name: Pearson Dot
461
+ - type: spearman_dot
462
+ value: 0.770072655568691
463
+ name: Spearman Dot
464
+ - type: pearson_max
465
+ value: 0.8125792968401813
466
+ name: Pearson Max
467
+ - type: spearman_max
468
+ value: 0.8121486514324944
469
+ name: Spearman Max
470
+ - task:
471
+ type: semantic-similarity
472
+ name: Semantic Similarity
473
+ dataset:
474
+ name: sts test 64
475
+ type: sts-test-64
476
+ metrics:
477
+ - type: pearson_cosine
478
+ value: 0.7873069617689994
479
+ name: Pearson Cosine
480
+ - type: spearman_cosine
481
+ value: 0.8024994399645912
482
+ name: Spearman Cosine
483
+ - type: pearson_manhattan
484
+ value: 0.8048161563115213
485
+ name: Pearson Manhattan
486
+ - type: spearman_manhattan
487
+ value: 0.8031972835914969
488
+ name: Spearman Manhattan
489
+ - type: pearson_euclidean
490
+ value: 0.8060416893207731
491
+ name: Pearson Euclidean
492
+ - type: spearman_euclidean
493
+ value: 0.8041515980374414
494
+ name: Spearman Euclidean
495
+ - type: pearson_dot
496
+ value: 0.747911221220991
497
+ name: Pearson Dot
498
+ - type: spearman_dot
499
+ value: 0.7386011869481828
500
+ name: Spearman Dot
501
+ - type: pearson_max
502
+ value: 0.8060416893207731
503
+ name: Pearson Max
504
+ - type: spearman_max
505
+ value: 0.8041515980374414
506
+ name: Spearman Max
507
+ ---
508
+
509
+ # SentenceTransformer based on aari1995/gbert-large-2-cls-nlisim
510
+
511
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [aari1995/gbert-large-2-cls-nlisim](https://huggingface.co/aari1995/gbert-large-2-cls-nlisim) on the [PhilipMay/stsb_multi_mt](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
512
+
513
+ ## Model Details
514
+
515
+ ### Model Description
516
+ - **Model Type:** Sentence Transformer
517
+ - **Base model:** [aari1995/gbert-large-2-cls-nlisim](https://huggingface.co/aari1995/gbert-large-2-cls-nlisim) <!-- at revision fb515aefe7a575165dcaa62db3f77a09642ebe64 -->
518
+ - **Maximum Sequence Length:** 8192 tokens
519
+ - **Output Dimensionality:** 1024 tokens
520
+ - **Similarity Function:** Cosine Similarity
521
+ - **Training Dataset:**
522
+ - [PhilipMay/stsb_multi_mt](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
523
+ - **Languages:** de, en, es, fr, it, nl, pl, pt, ru, zh
524
+ <!-- - **License:** Unknown -->
525
+
526
+ ### Model Sources
527
+
528
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
529
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
530
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
531
+
532
+ ### Full Model Architecture
533
+
534
+ ```
535
+ SentenceTransformer(
536
+ (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: JinaBertModel
537
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
538
+ )
539
+ ```
540
+
541
+ ## Usage
542
+
543
+ ### Direct Usage (Sentence Transformers)
544
+
545
+ First install the Sentence Transformers library:
546
+
547
+ ```bash
548
+ pip install -U sentence-transformers
549
+ ```
550
+
551
+ Then you can load this model and run inference.
552
+ ```python
553
+ from sentence_transformers import SentenceTransformer
554
+
555
+ # Download from the 🤗 Hub
556
+ model = SentenceTransformer("aari1995/gbert-large-2-cls-pawsx-nli-sts")
557
+ # Run inference
558
+ sentences = [
559
+ 'Zwei Frauen laufen.',
560
+ 'Frauen laufen.',
561
+ 'Die Frau prüft die Augen des Mannes.',
562
+ ]
563
+ embeddings = model.encode(sentences)
564
+ print(embeddings.shape)
565
+ # [3, 1024]
566
+
567
+ # Get the similarity scores for the embeddings
568
+ similarities = model.similarity(embeddings, embeddings)
569
+ print(similarities.shape)
570
+ # [3, 3]
571
+ ```
572
+
573
+ <!--
574
+ ### Direct Usage (Transformers)
575
+
576
+ <details><summary>Click to see the direct usage in Transformers</summary>
577
+
578
+ </details>
579
+ -->
580
+
581
+ <!--
582
+ ### Downstream Usage (Sentence Transformers)
583
+
584
+ You can finetune this model on your own dataset.
585
+
586
+ <details><summary>Click to expand</summary>
587
+
588
+ </details>
589
+ -->
590
+
591
+ <!--
592
+ ### Out-of-Scope Use
593
+
594
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
595
+ -->
596
+
597
+ ## Evaluation
598
+
599
+ ### Metrics
600
+
601
+ #### Semantic Similarity
602
+ * Dataset: `sts-dev-1024`
603
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
604
+
605
+ | Metric | Value |
606
+ |:--------------------|:-----------|
607
+ | pearson_cosine | 0.8418 |
608
+ | **spearman_cosine** | **0.8453** |
609
+ | pearson_manhattan | 0.8419 |
610
+ | spearman_manhattan | 0.845 |
611
+ | pearson_euclidean | 0.8423 |
612
+ | spearman_euclidean | 0.8453 |
613
+ | pearson_dot | 0.8417 |
614
+ | spearman_dot | 0.8451 |
615
+ | pearson_max | 0.8423 |
616
+ | spearman_max | 0.8453 |
617
+
618
+ #### Semantic Similarity
619
+ * Dataset: `sts-dev-768`
620
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
621
+
622
+ | Metric | Value |
623
+ |:--------------------|:-----------|
624
+ | pearson_cosine | 0.8418 |
625
+ | **spearman_cosine** | **0.8454** |
626
+ | pearson_manhattan | 0.8419 |
627
+ | spearman_manhattan | 0.8448 |
628
+ | pearson_euclidean | 0.8423 |
629
+ | spearman_euclidean | 0.8452 |
630
+ | pearson_dot | 0.8418 |
631
+ | spearman_dot | 0.8447 |
632
+ | pearson_max | 0.8423 |
633
+ | spearman_max | 0.8454 |
634
+
635
+ #### Semantic Similarity
636
+ * Dataset: `sts-dev-512`
637
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
638
+
639
+ | Metric | Value |
640
+ |:--------------------|:-----------|
641
+ | pearson_cosine | 0.8395 |
642
+ | **spearman_cosine** | **0.8438** |
643
+ | pearson_manhattan | 0.842 |
644
+ | spearman_manhattan | 0.8447 |
645
+ | pearson_euclidean | 0.8423 |
646
+ | spearman_euclidean | 0.8449 |
647
+ | pearson_dot | 0.8358 |
648
+ | spearman_dot | 0.838 |
649
+ | pearson_max | 0.8423 |
650
+ | spearman_max | 0.8449 |
651
+
652
+ #### Semantic Similarity
653
+ * Dataset: `sts-dev-256`
654
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
655
+
656
+ | Metric | Value |
657
+ |:--------------------|:-----------|
658
+ | pearson_cosine | 0.8339 |
659
+ | **spearman_cosine** | **0.8392** |
660
+ | pearson_manhattan | 0.838 |
661
+ | spearman_manhattan | 0.8399 |
662
+ | pearson_euclidean | 0.8389 |
663
+ | spearman_euclidean | 0.8405 |
664
+ | pearson_dot | 0.8231 |
665
+ | spearman_dot | 0.8243 |
666
+ | pearson_max | 0.8389 |
667
+ | spearman_max | 0.8405 |
668
+
669
+ #### Semantic Similarity
670
+ * Dataset: `sts-dev-128`
671
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
672
+
673
+ | Metric | Value |
674
+ |:--------------------|:-----------|
675
+ | pearson_cosine | 0.8254 |
676
+ | **spearman_cosine** | **0.8336** |
677
+ | pearson_manhattan | 0.8342 |
678
+ | spearman_manhattan | 0.8344 |
679
+ | pearson_euclidean | 0.8355 |
680
+ | spearman_euclidean | 0.8359 |
681
+ | pearson_dot | 0.8035 |
682
+ | spearman_dot | 0.805 |
683
+ | pearson_max | 0.8355 |
684
+ | spearman_max | 0.8359 |
685
+
686
+ #### Semantic Similarity
687
+ * Dataset: `sts-dev-64`
688
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
689
+
690
+ | Metric | Value |
691
+ |:--------------------|:-----------|
692
+ | pearson_cosine | 0.8151 |
693
+ | **spearman_cosine** | **0.8266** |
694
+ | pearson_manhattan | 0.8242 |
695
+ | spearman_manhattan | 0.8239 |
696
+ | pearson_euclidean | 0.8275 |
697
+ | spearman_euclidean | 0.8271 |
698
+ | pearson_dot | 0.7774 |
699
+ | spearman_dot | 0.779 |
700
+ | pearson_max | 0.8275 |
701
+ | spearman_max | 0.8271 |
702
+
703
+ #### Semantic Similarity
704
+ * Dataset: `sts-test-1024`
705
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
706
+
707
+ | Metric | Value |
708
+ |:--------------------|:-----------|
709
+ | pearson_cosine | 0.8131 |
710
+ | **spearman_cosine** | **0.8189** |
711
+ | pearson_manhattan | 0.8209 |
712
+ | spearman_manhattan | 0.8195 |
713
+ | pearson_euclidean | 0.8203 |
714
+ | spearman_euclidean | 0.8189 |
715
+ | pearson_dot | 0.8128 |
716
+ | spearman_dot | 0.8186 |
717
+ | pearson_max | 0.8209 |
718
+ | spearman_max | 0.8195 |
719
+
720
+ #### Semantic Similarity
721
+ * Dataset: `sts-test-768`
722
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
723
+
724
+ | Metric | Value |
725
+ |:--------------------|:-----------|
726
+ | pearson_cosine | 0.8122 |
727
+ | **spearman_cosine** | **0.8183** |
728
+ | pearson_manhattan | 0.8206 |
729
+ | spearman_manhattan | 0.819 |
730
+ | pearson_euclidean | 0.8197 |
731
+ | spearman_euclidean | 0.8183 |
732
+ | pearson_dot | 0.8107 |
733
+ | spearman_dot | 0.8149 |
734
+ | pearson_max | 0.8206 |
735
+ | spearman_max | 0.819 |
736
+
737
+ #### Semantic Similarity
738
+ * Dataset: `sts-test-512`
739
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
740
+
741
+ | Metric | Value |
742
+ |:--------------------|:-----------|
743
+ | pearson_cosine | 0.8096 |
744
+ | **spearman_cosine** | **0.8163** |
745
+ | pearson_manhattan | 0.818 |
746
+ | spearman_manhattan | 0.8165 |
747
+ | pearson_euclidean | 0.8174 |
748
+ | spearman_euclidean | 0.8159 |
749
+ | pearson_dot | 0.8059 |
750
+ | spearman_dot | 0.8089 |
751
+ | pearson_max | 0.818 |
752
+ | spearman_max | 0.8165 |
753
+
754
+ #### Semantic Similarity
755
+ * Dataset: `sts-test-256`
756
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
757
+
758
+ | Metric | Value |
759
+ |:--------------------|:----------|
760
+ | pearson_cosine | 0.8071 |
761
+ | **spearman_cosine** | **0.815** |
762
+ | pearson_manhattan | 0.8184 |
763
+ | spearman_manhattan | 0.8167 |
764
+ | pearson_euclidean | 0.8177 |
765
+ | spearman_euclidean | 0.8159 |
766
+ | pearson_dot | 0.7955 |
767
+ | spearman_dot | 0.7956 |
768
+ | pearson_max | 0.8184 |
769
+ | spearman_max | 0.8167 |
770
+
771
+ #### Semantic Similarity
772
+ * Dataset: `sts-test-128`
773
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
774
+
775
+ | Metric | Value |
776
+ |:--------------------|:-----------|
777
+ | pearson_cosine | 0.7974 |
778
+ | **spearman_cosine** | **0.8093** |
779
+ | pearson_manhattan | 0.8126 |
780
+ | spearman_manhattan | 0.8121 |
781
+ | pearson_euclidean | 0.8119 |
782
+ | spearman_euclidean | 0.8112 |
783
+ | pearson_dot | 0.774 |
784
+ | spearman_dot | 0.7701 |
785
+ | pearson_max | 0.8126 |
786
+ | spearman_max | 0.8121 |
787
+
788
+ #### Semantic Similarity
789
+ * Dataset: `sts-test-64`
790
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
791
+
792
+ | Metric | Value |
793
+ |:--------------------|:-----------|
794
+ | pearson_cosine | 0.7873 |
795
+ | **spearman_cosine** | **0.8025** |
796
+ | pearson_manhattan | 0.8048 |
797
+ | spearman_manhattan | 0.8032 |
798
+ | pearson_euclidean | 0.806 |
799
+ | spearman_euclidean | 0.8042 |
800
+ | pearson_dot | 0.7479 |
801
+ | spearman_dot | 0.7386 |
802
+ | pearson_max | 0.806 |
803
+ | spearman_max | 0.8042 |
804
+
805
+ <!--
806
+ ## Bias, Risks and Limitations
807
+
808
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
809
+ -->
810
+
811
+ <!--
812
+ ### Recommendations
813
+
814
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
815
+ -->
816
+
817
+ ## Training Details
818
+
819
+ ### Training Dataset
820
+
821
+ #### PhilipMay/stsb_multi_mt
822
+
823
+ * Dataset: [PhilipMay/stsb_multi_mt](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
824
+ * Size: 22,996 training samples
825
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
826
+ * Approximate statistics based on the first 1000 samples:
827
+ | | sentence1 | sentence2 | score |
828
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
829
+ | type | string | string | float |
830
+ | details | <ul><li>min: 6 tokens</li><li>mean: 18.13 tokens</li><li>max: 65 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 18.25 tokens</li><li>max: 90 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.54</li><li>max: 1.0</li></ul> |
831
+ * Samples:
832
+ | sentence1 | sentence2 | score |
833
+ |:-------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:--------------------------------|
834
+ | <code>schütze wegen mordes an schwarzem us-jugendlichen angeklagt</code> | <code>gedanken zu den rassenbeziehungen unter einem schwarzen präsidenten</code> | <code>0.1599999964237213</code> |
835
+ | <code>fußballspieler kicken einen fußball in das tor.</code> | <code>Ein Fußballspieler schießt ein Tor.</code> | <code>0.7599999904632568</code> |
836
+ | <code>obama lockert abschiebungsregeln für junge einwanderer</code> | <code>usa lockert abschiebebestimmungen für jugendliche: napolitano</code> | <code>0.800000011920929</code> |
837
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
838
+ ```json
839
+ {
840
+ "loss": "CosineSimilarityLoss",
841
+ "matryoshka_dims": [
842
+ 1024,
843
+ 768,
844
+ 512,
845
+ 256,
846
+ 128,
847
+ 64
848
+ ],
849
+ "matryoshka_weights": [
850
+ 1,
851
+ 1,
852
+ 1,
853
+ 1,
854
+ 1,
855
+ 1
856
+ ],
857
+ "n_dims_per_step": -1
858
+ }
859
+ ```
860
+
861
+ ### Evaluation Dataset
862
+
863
+ #### PhilipMay/stsb_multi_mt
864
+
865
+ * Dataset: [PhilipMay/stsb_multi_mt](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)
866
+ * Size: 1,500 evaluation samples
867
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
868
+ * Approximate statistics based on the first 1000 samples:
869
+ | | sentence1 | sentence2 | score |
870
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
871
+ | type | string | string | float |
872
+ | details | <ul><li>min: 5 tokens</li><li>mean: 16.54 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 16.53 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.47</li><li>max: 1.0</li></ul> |
873
+ * Samples:
874
+ | sentence1 | sentence2 | score |
875
+ |:-------------------------------------------------------------|:-----------------------------------------------------------|:-------------------------------|
876
+ | <code>Ein Mann mit einem Schutzhelm tanzt.</code> | <code>Ein Mann mit einem Schutzhelm tanzt.</code> | <code>1.0</code> |
877
+ | <code>Ein kleines Kind reitet auf einem Pferd.</code> | <code>Ein Kind reitet auf einem Pferd.</code> | <code>0.949999988079071</code> |
878
+ | <code>Ein Mann verfüttert eine Maus an eine Schlange.</code> | <code>Der Mann füttert die Schlange mit einer Maus.</code> | <code>1.0</code> |
879
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
880
+ ```json
881
+ {
882
+ "loss": "CosineSimilarityLoss",
883
+ "matryoshka_dims": [
884
+ 1024,
885
+ 768,
886
+ 512,
887
+ 256,
888
+ 128,
889
+ 64
890
+ ],
891
+ "matryoshka_weights": [
892
+ 1,
893
+ 1,
894
+ 1,
895
+ 1,
896
+ 1,
897
+ 1
898
+ ],
899
+ "n_dims_per_step": -1
900
+ }
901
+ ```
902
+
903
+ ### Training Hyperparameters
904
+ #### Non-Default Hyperparameters
905
+
906
+ - `eval_strategy`: steps
907
+ - `per_device_train_batch_size`: 4
908
+ - `per_device_eval_batch_size`: 16
909
+ - `learning_rate`: 5e-06
910
+ - `num_train_epochs`: 1
911
+ - `warmup_ratio`: 0.1
912
+ - `bf16`: True
913
+
914
+ #### All Hyperparameters
915
+ <details><summary>Click to expand</summary>
916
+
917
+ - `overwrite_output_dir`: False
918
+ - `do_predict`: False
919
+ - `eval_strategy`: steps
920
+ - `prediction_loss_only`: True
921
+ - `per_device_train_batch_size`: 4
922
+ - `per_device_eval_batch_size`: 16
923
+ - `per_gpu_train_batch_size`: None
924
+ - `per_gpu_eval_batch_size`: None
925
+ - `gradient_accumulation_steps`: 1
926
+ - `eval_accumulation_steps`: None
927
+ - `learning_rate`: 5e-06
928
+ - `weight_decay`: 0.0
929
+ - `adam_beta1`: 0.9
930
+ - `adam_beta2`: 0.999
931
+ - `adam_epsilon`: 1e-08
932
+ - `max_grad_norm`: 1.0
933
+ - `num_train_epochs`: 1
934
+ - `max_steps`: -1
935
+ - `lr_scheduler_type`: linear
936
+ - `lr_scheduler_kwargs`: {}
937
+ - `warmup_ratio`: 0.1
938
+ - `warmup_steps`: 0
939
+ - `log_level`: passive
940
+ - `log_level_replica`: warning
941
+ - `log_on_each_node`: True
942
+ - `logging_nan_inf_filter`: True
943
+ - `save_safetensors`: True
944
+ - `save_on_each_node`: False
945
+ - `save_only_model`: False
946
+ - `restore_callback_states_from_checkpoint`: False
947
+ - `no_cuda`: False
948
+ - `use_cpu`: False
949
+ - `use_mps_device`: False
950
+ - `seed`: 42
951
+ - `data_seed`: None
952
+ - `jit_mode_eval`: False
953
+ - `use_ipex`: False
954
+ - `bf16`: True
955
+ - `fp16`: False
956
+ - `fp16_opt_level`: O1
957
+ - `half_precision_backend`: auto
958
+ - `bf16_full_eval`: False
959
+ - `fp16_full_eval`: False
960
+ - `tf32`: None
961
+ - `local_rank`: 0
962
+ - `ddp_backend`: None
963
+ - `tpu_num_cores`: None
964
+ - `tpu_metrics_debug`: False
965
+ - `debug`: []
966
+ - `dataloader_drop_last`: False
967
+ - `dataloader_num_workers`: 0
968
+ - `dataloader_prefetch_factor`: None
969
+ - `past_index`: -1
970
+ - `disable_tqdm`: False
971
+ - `remove_unused_columns`: True
972
+ - `label_names`: None
973
+ - `load_best_model_at_end`: False
974
+ - `ignore_data_skip`: False
975
+ - `fsdp`: []
976
+ - `fsdp_min_num_params`: 0
977
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
978
+ - `fsdp_transformer_layer_cls_to_wrap`: None
979
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
980
+ - `deepspeed`: None
981
+ - `label_smoothing_factor`: 0.0
982
+ - `optim`: adamw_torch
983
+ - `optim_args`: None
984
+ - `adafactor`: False
985
+ - `group_by_length`: False
986
+ - `length_column_name`: length
987
+ - `ddp_find_unused_parameters`: None
988
+ - `ddp_bucket_cap_mb`: None
989
+ - `ddp_broadcast_buffers`: False
990
+ - `dataloader_pin_memory`: True
991
+ - `dataloader_persistent_workers`: False
992
+ - `skip_memory_metrics`: True
993
+ - `use_legacy_prediction_loop`: False
994
+ - `push_to_hub`: False
995
+ - `resume_from_checkpoint`: None
996
+ - `hub_model_id`: None
997
+ - `hub_strategy`: every_save
998
+ - `hub_private_repo`: False
999
+ - `hub_always_push`: False
1000
+ - `gradient_checkpointing`: False
1001
+ - `gradient_checkpointing_kwargs`: None
1002
+ - `include_inputs_for_metrics`: False
1003
+ - `eval_do_concat_batches`: True
1004
+ - `fp16_backend`: auto
1005
+ - `push_to_hub_model_id`: None
1006
+ - `push_to_hub_organization`: None
1007
+ - `mp_parameters`:
1008
+ - `auto_find_batch_size`: False
1009
+ - `full_determinism`: False
1010
+ - `torchdynamo`: None
1011
+ - `ray_scope`: last
1012
+ - `ddp_timeout`: 1800
1013
+ - `torch_compile`: False
1014
+ - `torch_compile_backend`: None
1015
+ - `torch_compile_mode`: None
1016
+ - `dispatch_batches`: None
1017
+ - `split_batches`: None
1018
+ - `include_tokens_per_second`: False
1019
+ - `include_num_input_tokens_seen`: False
1020
+ - `neftune_noise_alpha`: None
1021
+ - `optim_target_modules`: None
1022
+ - `batch_eval_metrics`: False
1023
+ - `eval_on_start`: False
1024
+ - `batch_sampler`: batch_sampler
1025
+ - `multi_dataset_batch_sampler`: proportional
1026
+
1027
+ </details>
1028
+
1029
+ ### Training Logs
1030
+ | Epoch | Step | Training Loss | loss | sts-dev-1024_spearman_cosine | sts-dev-128_spearman_cosine | sts-dev-256_spearman_cosine | sts-dev-512_spearman_cosine | sts-dev-64_spearman_cosine | sts-dev-768_spearman_cosine | sts-test-1024_spearman_cosine | sts-test-128_spearman_cosine | sts-test-256_spearman_cosine | sts-test-512_spearman_cosine | sts-test-64_spearman_cosine | sts-test-768_spearman_cosine |
1031
+ |:------:|:----:|:-------------:|:------:|:----------------------------:|:---------------------------:|:---------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:-----------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:---------------------------:|:----------------------------:|
1032
+ | 0.0174 | 100 | 0.2958 | - | - | - | - | - | - | - | - | - | - | - | - | - |
1033
+ | 0.0348 | 200 | 0.2914 | - | - | - | - | - | - | - | - | - | - | - | - | - |
1034
+ | 0.0522 | 300 | 0.2691 | - | - | - | - | - | - | - | - | - | - | - | - | - |
1035
+ | 0.0696 | 400 | 0.253 | - | - | - | - | - | - | - | - | - | - | - | - | - |
1036
+ | 0.0870 | 500 | 0.2458 | - | - | - | - | - | - | - | - | - | - | - | - | - |
1037
+ | 0.1044 | 600 | 0.2594 | - | - | - | - | - | - | - | - | - | - | - | - | - |
1038
+ | 0.1218 | 700 | 0.2339 | - | - | - | - | - | - | - | - | - | - | - | - | - |
1039
+ | 0.1392 | 800 | 0.2245 | - | - | - | - | - | - | - | - | - | - | - | - | - |
1040
+ | 0.1565 | 900 | 0.2122 | - | - | - | - | - | - | - | - | - | - | - | - | - |
1041
+ | 0.1739 | 1000 | 0.2369 | 0.2394 | 0.8402 | 0.8277 | 0.8352 | 0.8393 | 0.8164 | 0.8404 | - | - | - | - | - | - |
1042
+ | 0.1913 | 1100 | 0.2308 | - | - | - | - | - | - | - | - | - | - | - | - | - |
1043
+ | 0.2087 | 1200 | 0.2292 | - | - | - | - | - | - | - | - | - | - | - | - | - |
1044
+ | 0.2261 | 1300 | 0.2232 | - | - | - | - | - | - | - | - | - | - | - | - | - |
1045
+ | 0.2435 | 1400 | 0.2001 | - | - | - | - | - | - | - | - | - | - | - | - | - |
1046
+ | 0.2609 | 1500 | 0.2139 | - | - | - | - | - | - | - | - | - | - | - | - | - |
1047
+ | 0.2783 | 1600 | 0.1906 | - | - | - | - | - | - | - | - | - | - | - | - | - |
1048
+ | 0.2957 | 1700 | 0.1895 | - | - | - | - | - | - | - | - | - | - | - | - | - |
1049
+ | 0.3131 | 1800 | 0.2011 | - | - | - | - | - | - | - | - | - | - | - | - | - |
1050
+ | 0.3305 | 1900 | 0.1723 | - | - | - | - | - | - | - | - | - | - | - | - | - |
1051
+ | 0.3479 | 2000 | 0.1886 | 0.2340 | 0.8448 | 0.8321 | 0.8385 | 0.8435 | 0.8233 | 0.8449 | - | - | - | - | - | - |
1052
+ | 0.3653 | 2100 | 0.1719 | - | - | - | - | - | - | - | - | - | - | - | - | - |
1053
+ | 0.3827 | 2200 | 0.1879 | - | - | - | - | - | - | - | - | - | - | - | - | - |
1054
+ | 0.4001 | 2300 | 0.187 | - | - | - | - | - | - | - | - | - | - | - | - | - |
1055
+ | 0.4175 | 2400 | 0.1487 | - | - | - | - | - | - | - | - | - | - | - | - | - |
1056
+ | 0.4349 | 2500 | 0.1752 | - | - | - | - | - | - | - | - | - | - | - | - | - |
1057
+ | 0.4523 | 2600 | 0.1475 | - | - | - | - | - | - | - | - | - | - | - | - | - |
1058
+ | 0.4696 | 2700 | 0.1695 | - | - | - | - | - | - | - | - | - | - | - | - | - |
1059
+ | 0.4870 | 2800 | 0.1615 | - | - | - | - | - | - | - | - | - | - | - | - | - |
1060
+ | 0.5044 | 2900 | 0.1558 | - | - | - | - | - | - | - | - | - | - | - | - | - |
1061
+ | 0.5218 | 3000 | 0.1713 | 0.2357 | 0.8457 | 0.8344 | 0.8406 | 0.8447 | 0.8266 | 0.8461 | - | - | - | - | - | - |
1062
+ | 0.5392 | 3100 | 0.1556 | - | - | - | - | - | - | - | - | - | - | - | - | - |
1063
+ | 0.5566 | 3200 | 0.1743 | - | - | - | - | - | - | - | - | - | - | - | - | - |
1064
+ | 0.5740 | 3300 | 0.1426 | - | - | - | - | - | - | - | - | - | - | - | - | - |
1065
+ | 0.5914 | 3400 | 0.1519 | - | - | - | - | - | - | - | - | - | - | - | - | - |
1066
+ | 0.6088 | 3500 | 0.1763 | - | - | - | - | - | - | - | - | - | - | - | - | - |
1067
+ | 0.6262 | 3600 | 0.1456 | - | - | - | - | - | - | - | - | - | - | - | - | - |
1068
+ | 0.6436 | 3700 | 0.1649 | - | - | - | - | - | - | - | - | - | - | - | - | - |
1069
+ | 0.6610 | 3800 | 0.1427 | - | - | - | - | - | - | - | - | - | - | - | - | - |
1070
+ | 0.6784 | 3900 | 0.1284 | - | - | - | - | - | - | - | - | - | - | - | - | - |
1071
+ | 0.6958 | 4000 | 0.1533 | 0.2344 | 0.8417 | 0.8291 | 0.8357 | 0.8402 | 0.8225 | 0.8421 | - | - | - | - | - | - |
1072
+ | 0.7132 | 4100 | 0.1397 | - | - | - | - | - | - | - | - | - | - | - | - | - |
1073
+ | 0.7306 | 4200 | 0.1505 | - | - | - | - | - | - | - | - | - | - | - | - | - |
1074
+ | 0.7480 | 4300 | 0.1355 | - | - | - | - | - | - | - | - | - | - | - | - | - |
1075
+ | 0.7654 | 4400 | 0.1275 | - | - | - | - | - | - | - | - | - | - | - | - | - |
1076
+ | 0.7827 | 4500 | 0.1599 | - | - | - | - | - | - | - | - | - | - | - | - | - |
1077
+ | 0.8001 | 4600 | 0.1493 | - | - | - | - | - | - | - | - | - | - | - | - | - |
1078
+ | 0.8175 | 4700 | 0.1497 | - | - | - | - | - | - | - | - | - | - | - | - | - |
1079
+ | 0.8349 | 4800 | 0.1492 | - | - | - | - | - | - | - | - | - | - | - | - | - |
1080
+ | 0.8523 | 4900 | 0.1378 | - | - | - | - | - | - | - | - | - | - | - | - | - |
1081
+ | 0.8697 | 5000 | 0.1391 | 0.2362 | 0.8453 | 0.8336 | 0.8392 | 0.8438 | 0.8266 | 0.8454 | - | - | - | - | - | - |
1082
+ | 0.8871 | 5100 | 0.1622 | - | - | - | - | - | - | - | - | - | - | - | - | - |
1083
+ | 0.9045 | 5200 | 0.1456 | - | - | - | - | - | - | - | - | - | - | - | - | - |
1084
+ | 0.9219 | 5300 | 0.1367 | - | - | - | - | - | - | - | - | - | - | - | - | - |
1085
+ | 0.9393 | 5400 | 0.1243 | - | - | - | - | - | - | - | - | - | - | - | - | - |
1086
+ | 0.9567 | 5500 | 0.1389 | - | - | - | - | - | - | - | - | - | - | - | - | - |
1087
+ | 0.9741 | 5600 | 0.1338 | - | - | - | - | - | - | - | - | - | - | - | - | - |
1088
+ | 0.9915 | 5700 | 0.1146 | - | - | - | - | - | - | - | - | - | - | - | - | - |
1089
+ | 1.0 | 5749 | - | - | - | - | - | - | - | - | 0.8189 | 0.8093 | 0.8150 | 0.8163 | 0.8025 | 0.8183 |
1090
+
1091
+
1092
+ ### Framework Versions
1093
+ - Python: 3.9.16
1094
+ - Sentence Transformers: 3.0.0
1095
+ - Transformers: 4.42.0.dev0
1096
+ - PyTorch: 2.2.2+cu118
1097
+ - Accelerate: 0.31.0
1098
+ - Datasets: 2.19.1
1099
+ - Tokenizers: 0.19.1
1100
+
1101
+ ## Citation
1102
+
1103
+ ### BibTeX
1104
+
1105
+ #### Sentence Transformers
1106
+ ```bibtex
1107
+ @inproceedings{reimers-2019-sentence-bert,
1108
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
1109
+ author = "Reimers, Nils and Gurevych, Iryna",
1110
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
1111
+ month = "11",
1112
+ year = "2019",
1113
+ publisher = "Association for Computational Linguistics",
1114
+ url = "https://arxiv.org/abs/1908.10084",
1115
+ }
1116
+ ```
1117
+
1118
+ #### MatryoshkaLoss
1119
+ ```bibtex
1120
+ @misc{kusupati2024matryoshka,
1121
+ title={Matryoshka Representation Learning},
1122
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
1123
+ year={2024},
1124
+ eprint={2205.13147},
1125
+ archivePrefix={arXiv},
1126
+ primaryClass={cs.LG}
1127
+ }
1128
+ ```
1129
+
1130
+ <!--
1131
+ ## Glossary
1132
+
1133
+ *Clearly define terms in order to be accessible across audiences.*
1134
+ -->
1135
+
1136
+ <!--
1137
+ ## Model Card Authors
1138
+
1139
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
1140
+ -->
1141
+
1142
+ <!--
1143
+ ## Model Card Contact
1144
+
1145
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
1146
+ -->
config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "aari1995/gbert-large-2-cls-nlisim",
3
+ "architectures": [
4
+ "JinaBertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "attn_implementation": null,
8
+ "auto_map": {
9
+ "AutoConfig": "aari1995/gbert-large-2--configuration_bert.JinaBertConfig",
10
+ "AutoModel": "aari1995/gbert-large-2--modeling_bert.JinaBertModel",
11
+ "AutoModelForMaskedLM": "aari1995/gbert-large-2--modeling_bert.JinaBertForMaskedLM",
12
+ "AutoModelForSequenceClassification": "aari1995/gbert-large-2--modeling_bert.JinaBertForSequenceClassification"
13
+ },
14
+ "classifier_dropout": null,
15
+ "emb_pooler": null,
16
+ "feed_forward_type": "original",
17
+ "hidden_act": "gelu",
18
+ "hidden_dropout_prob": 0.1,
19
+ "hidden_size": 1024,
20
+ "initializer_range": 0.02,
21
+ "intermediate_size": 4096,
22
+ "layer_norm_eps": 1e-12,
23
+ "max_position_embeddings": 8192,
24
+ "model_type": "bert",
25
+ "num_attention_heads": 16,
26
+ "num_hidden_layers": 24,
27
+ "pad_token_id": 0,
28
+ "position_embedding_type": "alibi",
29
+ "torch_dtype": "float32",
30
+ "transformers_version": "4.42.0.dev0",
31
+ "type_vocab_size": 2,
32
+ "use_cache": true,
33
+ "vocab_size": 31102
34
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.0",
4
+ "transformers": "4.42.0.dev0",
5
+ "pytorch": "2.2.2+cu118"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aef227281a76ca404a5be3c43f4d99571ff8dfd09be21a359201e3cb5bdd3ef8
3
+ size 1340890848
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8192,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "101": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "102": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "103": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": false,
48
+ "mask_token": "[MASK]",
49
+ "max_len": 9999999999,
50
+ "max_length": 1000,
51
+ "model_max_length": 8192,
52
+ "never_split": null,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "[PAD]",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "[SEP]",
58
+ "stride": 0,
59
+ "strip_accents": false,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "[UNK]"
65
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff