Added training file
Browse files- train_on_streaming_lora.ipynb +503 -0
train_on_streaming_lora.ipynb
ADDED
@@ -0,0 +1,503 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "5e32d010-11d0-4be3-a34f-00c87d369347",
|
7 |
+
"metadata": {
|
8 |
+
"tags": []
|
9 |
+
},
|
10 |
+
"outputs": [
|
11 |
+
{
|
12 |
+
"name": "stdout",
|
13 |
+
"output_type": "stream",
|
14 |
+
"text": [
|
15 |
+
"\u001b[31mERROR: responses 0.18.0 has requirement urllib3>=1.25.10, but you'll have urllib3 1.25.8 which is incompatible.\u001b[0m\n",
|
16 |
+
"\u001b[33m WARNING: The script plasma_store is installed in '/home/qblocks/.local/bin' which is not on PATH.\n",
|
17 |
+
" Consider adding this directory to PATH or, if you prefer to suppress this warning, use --no-warn-script-location.\u001b[0m\n",
|
18 |
+
"\u001b[33m WARNING: The script huggingface-cli is installed in '/home/qblocks/.local/bin' which is not on PATH.\n",
|
19 |
+
" Consider adding this directory to PATH or, if you prefer to suppress this warning, use --no-warn-script-location.\u001b[0m\n",
|
20 |
+
"\u001b[33m WARNING: The script datasets-cli is installed in '/home/qblocks/.local/bin' which is not on PATH.\n",
|
21 |
+
" Consider adding this directory to PATH or, if you prefer to suppress this warning, use --no-warn-script-location.\u001b[0m\n",
|
22 |
+
"\u001b[33m WARNING: The scripts accelerate, accelerate-config and accelerate-launch are installed in '/home/qblocks/.local/bin' which is not on PATH.\n",
|
23 |
+
" Consider adding this directory to PATH or, if you prefer to suppress this warning, use --no-warn-script-location.\u001b[0m\n",
|
24 |
+
"\u001b[31mERROR: torchaudio 0.10.1+rocm4.1 has requirement torch==1.10.1, but you'll have torch 2.0.0 which is incompatible.\u001b[0m\n",
|
25 |
+
"\u001b[31mERROR: torchvision 0.11.2+cu111 has requirement torch==1.10.1, but you'll have torch 2.0.0 which is incompatible.\u001b[0m\n",
|
26 |
+
"\u001b[33m WARNING: The script transformers-cli is installed in '/home/qblocks/.local/bin' which is not on PATH.\n",
|
27 |
+
" Consider adding this directory to PATH or, if you prefer to suppress this warning, use --no-warn-script-location.\u001b[0m\n",
|
28 |
+
"\u001b[33m WARNING: The script isympy is installed in '/home/qblocks/.local/bin' which is not on PATH.\n",
|
29 |
+
" Consider adding this directory to PATH or, if you prefer to suppress this warning, use --no-warn-script-location.\u001b[0m\n",
|
30 |
+
"\u001b[33m WARNING: The scripts cmake, cpack and ctest are installed in '/home/qblocks/.local/bin' which is not on PATH.\n",
|
31 |
+
" Consider adding this directory to PATH or, if you prefer to suppress this warning, use --no-warn-script-location.\u001b[0m\n",
|
32 |
+
"\u001b[33m WARNING: The script lit is installed in '/home/qblocks/.local/bin' which is not on PATH.\n",
|
33 |
+
" Consider adding this directory to PATH or, if you prefer to suppress this warning, use --no-warn-script-location.\u001b[0m\n",
|
34 |
+
"\u001b[33m WARNING: The scripts convert-caffe2-to-onnx, convert-onnx-to-caffe2 and torchrun are installed in '/home/qblocks/.local/bin' which is not on PATH.\n",
|
35 |
+
" Consider adding this directory to PATH or, if you prefer to suppress this warning, use --no-warn-script-location.\u001b[0m\n"
|
36 |
+
]
|
37 |
+
}
|
38 |
+
],
|
39 |
+
"source": [
|
40 |
+
"!pip install -q bitsandbytes datasets accelerate loralib\n",
|
41 |
+
"!pip install -q git+https://github.com/huggingface/transformers.git@main git+https://github.com/huggingface/peft.git"
|
42 |
+
]
|
43 |
+
},
|
44 |
+
{
|
45 |
+
"cell_type": "code",
|
46 |
+
"execution_count": 8,
|
47 |
+
"id": "d35008ce-0d55-4f74-9eb9-c9dcd392a4ce",
|
48 |
+
"metadata": {
|
49 |
+
"tags": []
|
50 |
+
},
|
51 |
+
"outputs": [],
|
52 |
+
"source": [
|
53 |
+
"import os\n",
|
54 |
+
"os.environ[\"CUDA_VISIBLE_DEVICES\"]=\"0\"\n",
|
55 |
+
"import torch\n",
|
56 |
+
"import torch.nn as nn\n",
|
57 |
+
"import bitsandbytes as bnb\n",
|
58 |
+
"from transformers import AutoTokenizer, AutoConfig, AutoModelForCausalLM\n",
|
59 |
+
"\n",
|
60 |
+
"\n",
|
61 |
+
"tokenizer = AutoTokenizer.from_pretrained(\"bigscience/bloom-3b\")\n",
|
62 |
+
"tokenizer.pad_token = tokenizer.eos_token"
|
63 |
+
]
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"cell_type": "code",
|
67 |
+
"execution_count": 2,
|
68 |
+
"id": "0efc3e69-f796-46cf-8ee8-52d72f9f653e",
|
69 |
+
"metadata": {
|
70 |
+
"scrolled": true,
|
71 |
+
"tags": []
|
72 |
+
},
|
73 |
+
"outputs": [],
|
74 |
+
"source": [
|
75 |
+
"import transformers\n",
|
76 |
+
"from datasets import load_dataset\n",
|
77 |
+
"from datasets import interleave_datasets\n",
|
78 |
+
"data_as = load_dataset(\"aashay96/indic_language_corpus\",data_files=[\"indic_dataset_extracted/data/as/as.txt\"],split='train',streaming=True)\n",
|
79 |
+
"data_bn = load_dataset(\"aashay96/indic_language_corpus\",data_files=[\"indic_dataset_extracted/data/bn/bn.txt\"],split='train',streaming=True)\n",
|
80 |
+
"data_gu = load_dataset(\"aashay96/indic_language_corpus\",data_files=[\"indic_dataset_extracted/data/gu/gu.txt\"],split='train',streaming=True)\n",
|
81 |
+
"data_hi = load_dataset(\"aashay96/indic_language_corpus\",data_files=[\"indic_dataset_extracted/data/hi/hi.txt\"],split='train',streaming=True)\n",
|
82 |
+
"data_kn = load_dataset(\"aashay96/indic_language_corpus\",data_files=[\"indic_dataset_extracted/data/kn/kn.txt\"],split='train',streaming=True)\n",
|
83 |
+
"data_ml = load_dataset(\"aashay96/indic_language_corpus\",data_files=[\"indic_dataset_extracted/data/ml/ml.txt\"],split='train',streaming=True)\n",
|
84 |
+
"data_mr = load_dataset(\"aashay96/indic_language_corpus\",data_files=[\"indic_dataset_extracted/data/mr/mr.txt\"],split='train',streaming=True)\n",
|
85 |
+
"data_or = load_dataset(\"aashay96/indic_language_corpus\",data_files=[\"indic_dataset_extracted/data/or/or.txt\"],split='train',streaming=True)\n",
|
86 |
+
"data_pa = load_dataset(\"aashay96/indic_language_corpus\",data_files=[\"indic_dataset_extracted/data/pa/pa.txt\"],split='train',streaming=True)\n",
|
87 |
+
"data_ta = load_dataset(\"aashay96/indic_language_corpus\",data_files=[\"indic_dataset_extracted/data/ta/ta.txt\"],split='train',streaming=True)\n",
|
88 |
+
"data_te = load_dataset(\"aashay96/indic_language_corpus\",data_files=[\"indic_dataset_extracted/data/te/te.txt\"],split='train',streaming=True)\n",
|
89 |
+
"\n",
|
90 |
+
"multilingual_dataset = interleave_datasets([data_as, data_bn,data_gu,data_hi,data_kn,data_ml,data_mr,data_or,data_pa,data_ta,data_te])\n",
|
91 |
+
"\n",
|
92 |
+
"#data_en = load_dataset(\"aashay96/indic_language_corpus\",data_files=[\"indic_dataset_extracted/data/bn/en.txt\"],streaming=True)\n"
|
93 |
+
]
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"cell_type": "code",
|
97 |
+
"execution_count": 10,
|
98 |
+
"id": "f61461ed-e91e-45e4-b1cd-c31cf15a6d2d",
|
99 |
+
"metadata": {
|
100 |
+
"tags": []
|
101 |
+
},
|
102 |
+
"outputs": [],
|
103 |
+
"source": [
|
104 |
+
"multilingual_dataset = multilingual_dataset.map(lambda samples: tokenizer(samples['text'],truncation=True,max_length=1024,padding=True), batched=True)\n",
|
105 |
+
"#data.push_to_hub('aashay96/indic_complete_tokenised')"
|
106 |
+
]
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"cell_type": "code",
|
110 |
+
"execution_count": 3,
|
111 |
+
"id": "b8ed6593-d80c-4fdb-82e7-7b56b2bbc2c2",
|
112 |
+
"metadata": {
|
113 |
+
"scrolled": true,
|
114 |
+
"tags": []
|
115 |
+
},
|
116 |
+
"outputs": [
|
117 |
+
{
|
118 |
+
"name": "stderr",
|
119 |
+
"output_type": "stream",
|
120 |
+
"text": [
|
121 |
+
"Overriding torch_dtype=None with `torch_dtype=torch.float16` due to requirements of `bitsandbytes` to enable model loading in mixed int8. Either pass torch_dtype=torch.float16 or don't pass this argument at all to remove this warning.\n"
|
122 |
+
]
|
123 |
+
}
|
124 |
+
],
|
125 |
+
"source": [
|
126 |
+
"model = AutoModelForCausalLM.from_pretrained(\n",
|
127 |
+
" \"bigscience/bloom-3b\", \n",
|
128 |
+
" load_in_8bit=True, \n",
|
129 |
+
" device_map='auto',\n",
|
130 |
+
")\n"
|
131 |
+
]
|
132 |
+
},
|
133 |
+
{
|
134 |
+
"cell_type": "code",
|
135 |
+
"execution_count": 6,
|
136 |
+
"id": "6c4d2f2e-da71-42bc-a877-d4e236701f84",
|
137 |
+
"metadata": {
|
138 |
+
"tags": []
|
139 |
+
},
|
140 |
+
"outputs": [
|
141 |
+
{
|
142 |
+
"data": {
|
143 |
+
"text/plain": [
|
144 |
+
"BloomForCausalLM(\n",
|
145 |
+
" (transformer): BloomModel(\n",
|
146 |
+
" (word_embeddings): Embedding(250880, 2560)\n",
|
147 |
+
" (word_embeddings_layernorm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True)\n",
|
148 |
+
" (h): ModuleList(\n",
|
149 |
+
" (0-29): 30 x BloomBlock(\n",
|
150 |
+
" (input_layernorm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True)\n",
|
151 |
+
" (self_attention): BloomAttention(\n",
|
152 |
+
" (query_key_value): Linear8bitLt(in_features=2560, out_features=7680, bias=True)\n",
|
153 |
+
" (dense): Linear8bitLt(in_features=2560, out_features=2560, bias=True)\n",
|
154 |
+
" (attention_dropout): Dropout(p=0.0, inplace=False)\n",
|
155 |
+
" )\n",
|
156 |
+
" (post_attention_layernorm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True)\n",
|
157 |
+
" (mlp): BloomMLP(\n",
|
158 |
+
" (dense_h_to_4h): Linear8bitLt(in_features=2560, out_features=10240, bias=True)\n",
|
159 |
+
" (gelu_impl): BloomGelu()\n",
|
160 |
+
" (dense_4h_to_h): Linear8bitLt(in_features=10240, out_features=2560, bias=True)\n",
|
161 |
+
" )\n",
|
162 |
+
" )\n",
|
163 |
+
" )\n",
|
164 |
+
" (ln_f): LayerNorm((2560,), eps=1e-05, elementwise_affine=True)\n",
|
165 |
+
" )\n",
|
166 |
+
" (lm_head): Linear(in_features=2560, out_features=250880, bias=False)\n",
|
167 |
+
")"
|
168 |
+
]
|
169 |
+
},
|
170 |
+
"execution_count": 6,
|
171 |
+
"metadata": {},
|
172 |
+
"output_type": "execute_result"
|
173 |
+
}
|
174 |
+
],
|
175 |
+
"source": [
|
176 |
+
"model"
|
177 |
+
]
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"cell_type": "code",
|
181 |
+
"execution_count": 4,
|
182 |
+
"id": "90340bb5-8a3a-414a-8b5b-8cf897918381",
|
183 |
+
"metadata": {
|
184 |
+
"tags": []
|
185 |
+
},
|
186 |
+
"outputs": [],
|
187 |
+
"source": [
|
188 |
+
"for param in model.parameters():\n",
|
189 |
+
" param.requires_grad = False # freeze the model - train adapters later\n",
|
190 |
+
" if param.ndim == 1:\n",
|
191 |
+
" # cast the small parameters (e.g. layernorm) to fp32 for stability\n",
|
192 |
+
" param.data = param.data.to(torch.float32)\n",
|
193 |
+
"\n",
|
194 |
+
"model.gradient_checkpointing_enable() # reduce number of stored activations\n",
|
195 |
+
"model.enable_input_require_grads()\n",
|
196 |
+
"\n",
|
197 |
+
"class CastOutputToFloat(nn.Sequential):\n",
|
198 |
+
" def forward(self, x): return super().forward(x).to(torch.float32)\n",
|
199 |
+
"model.lm_head = CastOutputToFloat(model.lm_head)"
|
200 |
+
]
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"cell_type": "code",
|
204 |
+
"execution_count": 7,
|
205 |
+
"id": "963eccdd-a57c-4970-b86c-bf446cc0243a",
|
206 |
+
"metadata": {
|
207 |
+
"tags": []
|
208 |
+
},
|
209 |
+
"outputs": [
|
210 |
+
{
|
211 |
+
"data": {
|
212 |
+
"text/plain": [
|
213 |
+
"BloomForCausalLM(\n",
|
214 |
+
" (transformer): BloomModel(\n",
|
215 |
+
" (word_embeddings): Embedding(250880, 2560)\n",
|
216 |
+
" (word_embeddings_layernorm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True)\n",
|
217 |
+
" (h): ModuleList(\n",
|
218 |
+
" (0-29): 30 x BloomBlock(\n",
|
219 |
+
" (input_layernorm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True)\n",
|
220 |
+
" (self_attention): BloomAttention(\n",
|
221 |
+
" (query_key_value): Linear8bitLt(in_features=2560, out_features=7680, bias=True)\n",
|
222 |
+
" (dense): Linear8bitLt(in_features=2560, out_features=2560, bias=True)\n",
|
223 |
+
" (attention_dropout): Dropout(p=0.0, inplace=False)\n",
|
224 |
+
" )\n",
|
225 |
+
" (post_attention_layernorm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True)\n",
|
226 |
+
" (mlp): BloomMLP(\n",
|
227 |
+
" (dense_h_to_4h): Linear8bitLt(in_features=2560, out_features=10240, bias=True)\n",
|
228 |
+
" (gelu_impl): BloomGelu()\n",
|
229 |
+
" (dense_4h_to_h): Linear8bitLt(in_features=10240, out_features=2560, bias=True)\n",
|
230 |
+
" )\n",
|
231 |
+
" )\n",
|
232 |
+
" )\n",
|
233 |
+
" (ln_f): LayerNorm((2560,), eps=1e-05, elementwise_affine=True)\n",
|
234 |
+
" )\n",
|
235 |
+
" (lm_head): CastOutputToFloat(\n",
|
236 |
+
" (0): Linear(in_features=2560, out_features=250880, bias=False)\n",
|
237 |
+
" )\n",
|
238 |
+
")"
|
239 |
+
]
|
240 |
+
},
|
241 |
+
"execution_count": 7,
|
242 |
+
"metadata": {},
|
243 |
+
"output_type": "execute_result"
|
244 |
+
}
|
245 |
+
],
|
246 |
+
"source": [
|
247 |
+
"model"
|
248 |
+
]
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"cell_type": "code",
|
252 |
+
"execution_count": 5,
|
253 |
+
"id": "0de04fc8-1541-445d-8a6c-528862e18f69",
|
254 |
+
"metadata": {
|
255 |
+
"tags": []
|
256 |
+
},
|
257 |
+
"outputs": [],
|
258 |
+
"source": [
|
259 |
+
"def print_trainable_parameters(model):\n",
|
260 |
+
" \"\"\"\n",
|
261 |
+
" Prints the number of trainable parameters in the model.\n",
|
262 |
+
" \"\"\"\n",
|
263 |
+
" trainable_params = 0\n",
|
264 |
+
" all_param = 0\n",
|
265 |
+
" for _, param in model.named_parameters():\n",
|
266 |
+
" all_param += param.numel()\n",
|
267 |
+
" if param.requires_grad:\n",
|
268 |
+
" trainable_params += param.numel()\n",
|
269 |
+
" print(\n",
|
270 |
+
" f\"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param}\"\n",
|
271 |
+
" )"
|
272 |
+
]
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"cell_type": "code",
|
276 |
+
"execution_count": 6,
|
277 |
+
"id": "ac1c4734-530a-4c9c-a055-8c8d3f46b169",
|
278 |
+
"metadata": {
|
279 |
+
"tags": []
|
280 |
+
},
|
281 |
+
"outputs": [
|
282 |
+
{
|
283 |
+
"name": "stdout",
|
284 |
+
"output_type": "stream",
|
285 |
+
"text": [
|
286 |
+
"trainable params: 4915200 || all params: 3007472640 || trainable%: 0.1634329082375293\n"
|
287 |
+
]
|
288 |
+
}
|
289 |
+
],
|
290 |
+
"source": [
|
291 |
+
"from peft import LoraConfig, get_peft_model \n",
|
292 |
+
"\n",
|
293 |
+
"config = LoraConfig(\n",
|
294 |
+
" r=16,\n",
|
295 |
+
" lora_alpha=32,\n",
|
296 |
+
" lora_dropout=0.05,\n",
|
297 |
+
" bias=\"none\",\n",
|
298 |
+
" task_type=\"CAUSAL_LM\"\n",
|
299 |
+
")\n",
|
300 |
+
"\n",
|
301 |
+
"model = get_peft_model(model, config)\n",
|
302 |
+
"print_trainable_parameters(model)"
|
303 |
+
]
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"cell_type": "code",
|
307 |
+
"execution_count": 8,
|
308 |
+
"id": "683c0239-9384-4d80-b2d0-64738e9c53f5",
|
309 |
+
"metadata": {
|
310 |
+
"tags": []
|
311 |
+
},
|
312 |
+
"outputs": [
|
313 |
+
{
|
314 |
+
"data": {
|
315 |
+
"text/plain": [
|
316 |
+
"{'train': <datasets.iterable_dataset.IterableDataset at 0x7ff380f5fcd0>}"
|
317 |
+
]
|
318 |
+
},
|
319 |
+
"execution_count": 8,
|
320 |
+
"metadata": {},
|
321 |
+
"output_type": "execute_result"
|
322 |
+
}
|
323 |
+
],
|
324 |
+
"source": [
|
325 |
+
"data"
|
326 |
+
]
|
327 |
+
},
|
328 |
+
{
|
329 |
+
"cell_type": "code",
|
330 |
+
"execution_count": 12,
|
331 |
+
"id": "ab933bdc-8d59-44e3-b210-a5c517660ef3",
|
332 |
+
"metadata": {
|
333 |
+
"tags": []
|
334 |
+
},
|
335 |
+
"outputs": [
|
336 |
+
{
|
337 |
+
"data": {
|
338 |
+
"text/plain": [
|
339 |
+
"<datasets.iterable_dataset.IterableDataset at 0x7f0e30bce340>"
|
340 |
+
]
|
341 |
+
},
|
342 |
+
"execution_count": 12,
|
343 |
+
"metadata": {},
|
344 |
+
"output_type": "execute_result"
|
345 |
+
}
|
346 |
+
],
|
347 |
+
"source": []
|
348 |
+
},
|
349 |
+
{
|
350 |
+
"cell_type": "code",
|
351 |
+
"execution_count": 8,
|
352 |
+
"id": "edabb62f-d5b3-4d5a-9220-751b940e0a5b",
|
353 |
+
"metadata": {
|
354 |
+
"tags": []
|
355 |
+
},
|
356 |
+
"outputs": [
|
357 |
+
{
|
358 |
+
"name": "stderr",
|
359 |
+
"output_type": "stream",
|
360 |
+
"text": [
|
361 |
+
"Failed to detect the name of this notebook, you can set it manually with the WANDB_NOTEBOOK_NAME environment variable to enable code saving.\n",
|
362 |
+
"\u001b[34m\u001b[1mwandb\u001b[0m: Currently logged in as: \u001b[33maashay96\u001b[0m (\u001b[33mindic-lm\u001b[0m). Use \u001b[1m`wandb login --relogin`\u001b[0m to force relogin\n"
|
363 |
+
]
|
364 |
+
},
|
365 |
+
{
|
366 |
+
"data": {
|
367 |
+
"text/plain": [
|
368 |
+
"True"
|
369 |
+
]
|
370 |
+
},
|
371 |
+
"execution_count": 8,
|
372 |
+
"metadata": {},
|
373 |
+
"output_type": "execute_result"
|
374 |
+
}
|
375 |
+
],
|
376 |
+
"source": [
|
377 |
+
"!pip install wandb\n",
|
378 |
+
"import wandb\n",
|
379 |
+
"wandb.login()\n",
|
380 |
+
"\n",
|
381 |
+
"\n"
|
382 |
+
]
|
383 |
+
},
|
384 |
+
{
|
385 |
+
"cell_type": "code",
|
386 |
+
"execution_count": null,
|
387 |
+
"id": "0ce63418-3aba-4549-8a50-922a5cf10cb1",
|
388 |
+
"metadata": {
|
389 |
+
"scrolled": true,
|
390 |
+
"tags": []
|
391 |
+
},
|
392 |
+
"outputs": [],
|
393 |
+
"source": [
|
394 |
+
"import transformers\n",
|
395 |
+
"from datasets import load_dataset\n",
|
396 |
+
"#data = load_dataset(\"Abirate/english_quotes\")\n",
|
397 |
+
"#data = data.map(lambda samples: tokenizer(samples['quote']), batched=True)\n",
|
398 |
+
"\n",
|
399 |
+
"trainer = transformers.Trainer(\n",
|
400 |
+
" model=model, \n",
|
401 |
+
" train_dataset=multilingual_dataset,\n",
|
402 |
+
" args=transformers.TrainingArguments(\n",
|
403 |
+
" per_device_train_batch_size=4, \n",
|
404 |
+
" gradient_accumulation_steps=16,\n",
|
405 |
+
" #gradient_checkpointing=True,\n",
|
406 |
+
" warmup_steps=100, \n",
|
407 |
+
" save_steps=1000,\n",
|
408 |
+
" #num_train_epochs=3,\n",
|
409 |
+
" max_steps=20000, \n",
|
410 |
+
" learning_rate=3e-4, \n",
|
411 |
+
" fp16=True,\n",
|
412 |
+
" logging_steps=1, \n",
|
413 |
+
" output_dir='outputs',report_to='wandb'\n",
|
414 |
+
" ),\n",
|
415 |
+
" data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False)\n",
|
416 |
+
")\n",
|
417 |
+
"model.config.use_cache = False # silence the warnings. Please re-enable for inference!\n",
|
418 |
+
"trainer.train()"
|
419 |
+
]
|
420 |
+
},
|
421 |
+
{
|
422 |
+
"cell_type": "code",
|
423 |
+
"execution_count": null,
|
424 |
+
"id": "0ceeb7a2-7f94-4153-96b0-af19acf90bdb",
|
425 |
+
"metadata": {
|
426 |
+
"tags": []
|
427 |
+
},
|
428 |
+
"outputs": [],
|
429 |
+
"source": [
|
430 |
+
"model.push_to_hub(\"aashay96/indic-BloomLM\", use_auth_token=True)"
|
431 |
+
]
|
432 |
+
},
|
433 |
+
{
|
434 |
+
"cell_type": "code",
|
435 |
+
"execution_count": 11,
|
436 |
+
"id": "15eb4b53-1354-4729-9cb7-872b057b11be",
|
437 |
+
"metadata": {
|
438 |
+
"tags": []
|
439 |
+
},
|
440 |
+
"outputs": [
|
441 |
+
{
|
442 |
+
"name": "stdout",
|
443 |
+
"output_type": "stream",
|
444 |
+
"text": [
|
445 |
+
"\n",
|
446 |
+
"\n",
|
447 |
+
" आप कैसे हैं? आप अपने जीवन में क्या कर रहे हैं?\n"
|
448 |
+
]
|
449 |
+
},
|
450 |
+
{
|
451 |
+
"name": "stderr",
|
452 |
+
"output_type": "stream",
|
453 |
+
"text": [
|
454 |
+
"wandb: Waiting for W&B process to finish... (success).\n"
|
455 |
+
]
|
456 |
+
}
|
457 |
+
],
|
458 |
+
"source": [
|
459 |
+
"import torch\n",
|
460 |
+
"from peft import PeftModel, PeftConfig\n",
|
461 |
+
"from transformers import AutoModelForCausalLM, AutoTokenizer\n",
|
462 |
+
"\n",
|
463 |
+
"peft_model_id = \"aashay96/indic-BloomLM\"\n",
|
464 |
+
"config = PeftConfig.from_pretrained(peft_model_id)\n",
|
465 |
+
"model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, return_dict=True, load_in_8bit=True, device_map='auto')\n",
|
466 |
+
"tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)\n",
|
467 |
+
"\n",
|
468 |
+
"# Load the Lora model\n",
|
469 |
+
"model = PeftModel.from_pretrained(model, peft_model_id)\n",
|
470 |
+
"\n",
|
471 |
+
"\n",
|
472 |
+
"\n",
|
473 |
+
"batch = tokenizer(\"आप कैसे हैं\", return_tensors='pt')\n",
|
474 |
+
"\n",
|
475 |
+
"with torch.cuda.amp.autocast():\n",
|
476 |
+
" output_tokens = model.generate(**batch, max_new_tokens=10)\n",
|
477 |
+
"\n",
|
478 |
+
"print('\\n\\n', tokenizer.decode(output_tokens[0], skip_special_tokens=True))"
|
479 |
+
]
|
480 |
+
}
|
481 |
+
],
|
482 |
+
"metadata": {
|
483 |
+
"kernelspec": {
|
484 |
+
"display_name": "Python 3 (ipykernel)",
|
485 |
+
"language": "python",
|
486 |
+
"name": "python3"
|
487 |
+
},
|
488 |
+
"language_info": {
|
489 |
+
"codemirror_mode": {
|
490 |
+
"name": "ipython",
|
491 |
+
"version": 3
|
492 |
+
},
|
493 |
+
"file_extension": ".py",
|
494 |
+
"mimetype": "text/x-python",
|
495 |
+
"name": "python",
|
496 |
+
"nbconvert_exporter": "python",
|
497 |
+
"pygments_lexer": "ipython3",
|
498 |
+
"version": "3.8.10"
|
499 |
+
}
|
500 |
+
},
|
501 |
+
"nbformat": 4,
|
502 |
+
"nbformat_minor": 5
|
503 |
+
}
|