aayushraina
commited on
Upload 5 files
Browse files- README.md +118 -0
- app.py +136 -0
- app_gradio.py +123 -0
- requirements.txt +11 -0
- tokenizer_config.json +14 -0
README.md
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: hi
|
3 |
+
tags:
|
4 |
+
- hindi
|
5 |
+
- tokenizer
|
6 |
+
- bpe
|
7 |
+
- subword
|
8 |
+
- text-processing
|
9 |
+
pipeline_tag: text2text-generation
|
10 |
+
inference: true
|
11 |
+
license: mit
|
12 |
+
spaces:
|
13 |
+
- aayushraina/bpe-hindi
|
14 |
+
---
|
15 |
+
|
16 |
+
# Hindi Byte Pair Encoding (BPE) Tokenizer
|
17 |
+
|
18 |
+
A specialized BPE tokenizer for Hindi text that achieves efficient compression while maintaining linguistic coherence.
|
19 |
+
|
20 |
+
## Online Demo
|
21 |
+
|
22 |
+
Try the tokenizer in your browser: [Hindi BPE Tokenizer Demo](https://huggingface.co/spaces/aayushraina/bpe-hindi)
|
23 |
+
|
24 |
+
## Project Overview
|
25 |
+
|
26 |
+
This project implements a Byte Pair Encoding (BPE) tokenizer specifically designed for Hindi text. It features:
|
27 |
+
- Efficient trie-based tokenization
|
28 |
+
- Visualization of training progress
|
29 |
+
- Compression ratio optimization
|
30 |
+
- Support for large Hindi text datasets
|
31 |
+
- Hugging Face compatibility
|
32 |
+
|
33 |
+
## Project Structure
|
34 |
+
hindi-bpe/
|
35 |
+
├── data/ # Dataset directory
|
36 |
+
│ ├── train/ # Training data
|
37 |
+
│ └── valid/ # Validation data
|
38 |
+
├── tokenizer/ # Saved tokenizer files
|
39 |
+
│ ├── encoder.json # Encoder state
|
40 |
+
│ └── vocab_stats.json # Vocabulary statistics
|
41 |
+
├── output/ # Visualization outputs
|
42 |
+
├── byte_pair_encoder.py # Core BPE implementation
|
43 |
+
├── hindi_bpe.py # Hindi-specific wrapper
|
44 |
+
├── test_hindi_bpe.py # Test suite
|
45 |
+
└── requirements.txt # Dependencies
|
46 |
+
|
47 |
+
## Training stats
|
48 |
+
- Iteration 4500:
|
49 |
+
- Vocabulary size: 4,477
|
50 |
+
- Data size: 448,754
|
51 |
+
- Compression ratio: 3.66
|
52 |
+
- Max token length: 64
|
53 |
+
|
54 |
+
## File Descriptions
|
55 |
+
|
56 |
+
1. **byte_pair_encoder.py**
|
57 |
+
- Core BPE implementation
|
58 |
+
- Trie-based tokenization
|
59 |
+
- Training statistics tracking
|
60 |
+
- Visualization utilities
|
61 |
+
|
62 |
+
2. **hindi_bpe.py**
|
63 |
+
- Hindi-specific tokenizer wrapper
|
64 |
+
- Text preprocessing
|
65 |
+
- Model saving/loading
|
66 |
+
- Compression ratio calculation
|
67 |
+
|
68 |
+
3. **app.py**
|
69 |
+
- Interactive web interface
|
70 |
+
- Real-time tokenization
|
71 |
+
- Training visualization
|
72 |
+
- Model parameter tuning
|
73 |
+
|
74 |
+
4. **test_hindi_bpe.py**
|
75 |
+
- Test suite for tokenizer
|
76 |
+
- Performance benchmarks
|
77 |
+
- Example usage
|
78 |
+
|
79 |
+
## Installation
|
80 |
+
- bash
|
81 |
+
- Clone repository
|
82 |
+
- git clone https://github.com/yourusername/hindi-bpe.git
|
83 |
+
- cd hindi-bpe
|
84 |
+
- pip install -r requirements.txt
|
85 |
+
|
86 |
+
## Download and prepare dataset
|
87 |
+
- python download_dataset.py
|
88 |
+
|
89 |
+
### Web Interface
|
90 |
+
- streamlit run app.py
|
91 |
+
|
92 |
+
### Test-
|
93 |
+
- python test_hindi_bpe.py
|
94 |
+
- The test suite includes:
|
95 |
+
- Training pipeline verification
|
96 |
+
- Compression ratio validation
|
97 |
+
- Token count requirements
|
98 |
+
- Encoding/decoding accuracy
|
99 |
+
|
100 |
+
## Performance Metrics
|
101 |
+
|
102 |
+
The tokenizer aims to achieve:
|
103 |
+
- Vocabulary size < 5000 tokens
|
104 |
+
- Compression ratio ≥ 3.2
|
105 |
+
- Fast encoding/decoding
|
106 |
+
- Memory-efficient operation
|
107 |
+
|
108 |
+
## Contributing
|
109 |
+
|
110 |
+
1. Fork the repository
|
111 |
+
2. Create feature branch
|
112 |
+
3. Commit changes
|
113 |
+
4. Push to branch
|
114 |
+
5. Create Pull Request
|
115 |
+
|
116 |
+
## License
|
117 |
+
|
118 |
+
This project is licensed under the MIT License - see the LICENSE file for details.
|
app.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from huggingface_hub import snapshot_download
|
3 |
+
from hindi_bpe import HindiBPE, preprocess_hindi_text
|
4 |
+
import pandas as pd
|
5 |
+
import plotly.express as px
|
6 |
+
import os
|
7 |
+
|
8 |
+
# Download tokenizer if not exists
|
9 |
+
if not os.path.exists("tokenizer"):
|
10 |
+
snapshot_download(
|
11 |
+
repo_id="aayushraina/bpe-hindi",
|
12 |
+
local_dir="tokenizer",
|
13 |
+
allow_patterns=["*.json"]
|
14 |
+
)
|
15 |
+
|
16 |
+
class TokenizerDemo:
|
17 |
+
def __init__(self):
|
18 |
+
self.tokenizer = HindiBPE.load_tokenizer("tokenizer")
|
19 |
+
|
20 |
+
def tokenize_text(self, text: str) -> tuple:
|
21 |
+
"""Tokenize text and return visualization"""
|
22 |
+
if not text:
|
23 |
+
return "", None, "Please enter some text"
|
24 |
+
|
25 |
+
# Preprocess
|
26 |
+
text = preprocess_hindi_text(text)
|
27 |
+
|
28 |
+
# Tokenize
|
29 |
+
tokens = self.tokenizer.encode(text)
|
30 |
+
|
31 |
+
# Create visualization
|
32 |
+
token_df = pd.DataFrame({
|
33 |
+
'Token': tokens,
|
34 |
+
'Length': [len(token) for token in tokens]
|
35 |
+
})
|
36 |
+
|
37 |
+
fig = px.scatter(token_df,
|
38 |
+
x=range(len(tokens)),
|
39 |
+
y='Length',
|
40 |
+
hover_data=['Token'],
|
41 |
+
title='Token Lengths in Sequence')
|
42 |
+
|
43 |
+
# Calculate statistics
|
44 |
+
stats = {
|
45 |
+
'Total Tokens': len(tokens),
|
46 |
+
'Unique Tokens': len(set(tokens)),
|
47 |
+
'Average Token Length': sum(len(t) for t in tokens) / len(tokens),
|
48 |
+
'Compression Ratio': len(text) / sum(len(t) for t in tokens)
|
49 |
+
}
|
50 |
+
|
51 |
+
stats_str = "\n".join(f"{k}: {v:.2f}" if isinstance(v, float) else f"{k}: {v}"
|
52 |
+
for k, v in stats.items())
|
53 |
+
|
54 |
+
return (
|
55 |
+
" ".join(tokens), # Tokenized text
|
56 |
+
fig, # Visualization
|
57 |
+
stats_str # Statistics
|
58 |
+
)
|
59 |
+
|
60 |
+
def decode_tokens(self, tokens_text: str) -> str:
|
61 |
+
"""Decode space-separated tokens back to text"""
|
62 |
+
if not tokens_text:
|
63 |
+
return "Please tokenize some text first"
|
64 |
+
tokens = tokens_text.split()
|
65 |
+
return self.tokenizer.decode(tokens)
|
66 |
+
|
67 |
+
# Create Gradio interface
|
68 |
+
demo = TokenizerDemo()
|
69 |
+
|
70 |
+
interface = gr.Blocks(title="Hindi BPE Tokenizer")
|
71 |
+
|
72 |
+
with interface:
|
73 |
+
gr.Markdown("""
|
74 |
+
# Hindi BPE Tokenizer Demo
|
75 |
+
|
76 |
+
This demo showcases a Byte Pair Encoding (BPE) tokenizer specifically trained for Hindi text.
|
77 |
+
Enter Hindi text to see how it gets tokenized and analyze the token distribution.
|
78 |
+
|
79 |
+
[View model on Hugging Face](https://huggingface.co/aayushraina/bpe-hindi)
|
80 |
+
""")
|
81 |
+
|
82 |
+
with gr.Row():
|
83 |
+
with gr.Column():
|
84 |
+
input_text = gr.Textbox(
|
85 |
+
label="Input Hindi Text",
|
86 |
+
placeholder="हिंदी में टेक्स्ट दर्ज करें...",
|
87 |
+
lines=5
|
88 |
+
)
|
89 |
+
tokenize_btn = gr.Button("Tokenize")
|
90 |
+
|
91 |
+
with gr.Column():
|
92 |
+
tokens_output = gr.Textbox(
|
93 |
+
label="Tokenized Output",
|
94 |
+
lines=5
|
95 |
+
)
|
96 |
+
decode_btn = gr.Button("Decode")
|
97 |
+
|
98 |
+
original_output = gr.Textbox(
|
99 |
+
label="Decoded Text",
|
100 |
+
lines=5
|
101 |
+
)
|
102 |
+
|
103 |
+
stats_output = gr.Textbox(
|
104 |
+
label="Tokenization Statistics",
|
105 |
+
lines=4
|
106 |
+
)
|
107 |
+
|
108 |
+
plot_output = gr.Plot(
|
109 |
+
label="Token Length Distribution"
|
110 |
+
)
|
111 |
+
|
112 |
+
# Set up event handlers
|
113 |
+
tokenize_btn.click(
|
114 |
+
fn=demo.tokenize_text,
|
115 |
+
inputs=input_text,
|
116 |
+
outputs=[tokens_output, plot_output, stats_output]
|
117 |
+
)
|
118 |
+
|
119 |
+
decode_btn.click(
|
120 |
+
fn=demo.decode_tokens,
|
121 |
+
inputs=tokens_output,
|
122 |
+
outputs=original_output
|
123 |
+
)
|
124 |
+
|
125 |
+
# Add examples
|
126 |
+
gr.Examples(
|
127 |
+
examples=[
|
128 |
+
["हिंदी भाषा बहुत सुंदर है।"],
|
129 |
+
["भारत एक विशाल देश है। यहाँ की संस्कृति बहुत पुरानी है।"],
|
130 |
+
["मैं हिंदी में प्रोग्रामिंग सीख रहा हूं।"]
|
131 |
+
],
|
132 |
+
inputs=input_text
|
133 |
+
)
|
134 |
+
|
135 |
+
# Launch the interface
|
136 |
+
interface.launch()
|
app_gradio.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from hindi_bpe import HindiBPE, preprocess_hindi_text
|
3 |
+
import pandas as pd
|
4 |
+
import plotly.express as px
|
5 |
+
import json
|
6 |
+
|
7 |
+
class TokenizerDemo:
|
8 |
+
def __init__(self):
|
9 |
+
self.tokenizer = HindiBPE.load_tokenizer("tokenizer")
|
10 |
+
|
11 |
+
def tokenize_text(self, text: str) -> tuple:
|
12 |
+
"""Tokenize text and return visualization"""
|
13 |
+
# Preprocess
|
14 |
+
text = preprocess_hindi_text(text)
|
15 |
+
|
16 |
+
# Tokenize
|
17 |
+
tokens = self.tokenizer.encode(text)
|
18 |
+
|
19 |
+
# Create visualization
|
20 |
+
token_df = pd.DataFrame({
|
21 |
+
'Token': tokens,
|
22 |
+
'Length': [len(token) for token in tokens]
|
23 |
+
})
|
24 |
+
|
25 |
+
fig = px.scatter(token_df,
|
26 |
+
x=range(len(tokens)),
|
27 |
+
y='Length',
|
28 |
+
hover_data=['Token'],
|
29 |
+
title='Token Lengths in Sequence')
|
30 |
+
|
31 |
+
# Calculate statistics
|
32 |
+
stats = {
|
33 |
+
'Total Tokens': len(tokens),
|
34 |
+
'Unique Tokens': len(set(tokens)),
|
35 |
+
'Average Token Length': sum(len(t) for t in tokens) / len(tokens),
|
36 |
+
'Compression Ratio': len(text) / sum(len(t) for t in tokens)
|
37 |
+
}
|
38 |
+
|
39 |
+
stats_str = "\n".join(f"{k}: {v:.2f}" if isinstance(v, float) else f"{k}: {v}"
|
40 |
+
for k, v in stats.items())
|
41 |
+
|
42 |
+
return (
|
43 |
+
" ".join(tokens), # Tokenized text
|
44 |
+
fig, # Visualization
|
45 |
+
stats_str # Statistics
|
46 |
+
)
|
47 |
+
|
48 |
+
def decode_tokens(self, tokens_text: str) -> str:
|
49 |
+
"""Decode space-separated tokens back to text"""
|
50 |
+
tokens = tokens_text.split()
|
51 |
+
return self.tokenizer.decode(tokens)
|
52 |
+
|
53 |
+
def create_demo() -> gr.Interface:
|
54 |
+
"""Create Gradio interface"""
|
55 |
+
demo = TokenizerDemo()
|
56 |
+
|
57 |
+
with gr.Blocks(title="Hindi BPE Tokenizer") as interface:
|
58 |
+
gr.Markdown("""
|
59 |
+
# Hindi BPE Tokenizer Demo
|
60 |
+
|
61 |
+
This demo showcases a Byte Pair Encoding (BPE) tokenizer specifically trained for Hindi text.
|
62 |
+
Enter Hindi text to see how it gets tokenized and analyze the token distribution.
|
63 |
+
""")
|
64 |
+
|
65 |
+
with gr.Row():
|
66 |
+
with gr.Column():
|
67 |
+
input_text = gr.Textbox(
|
68 |
+
label="Input Hindi Text",
|
69 |
+
placeholder="हिंदी में टेक्स्ट दर्ज करें...",
|
70 |
+
lines=5
|
71 |
+
)
|
72 |
+
tokenize_btn = gr.Button("Tokenize")
|
73 |
+
|
74 |
+
with gr.Column():
|
75 |
+
tokens_output = gr.Textbox(
|
76 |
+
label="Tokenized Output",
|
77 |
+
lines=5
|
78 |
+
)
|
79 |
+
decode_btn = gr.Button("Decode")
|
80 |
+
|
81 |
+
original_output = gr.Textbox(
|
82 |
+
label="Decoded Text",
|
83 |
+
lines=5
|
84 |
+
)
|
85 |
+
|
86 |
+
stats_output = gr.Textbox(
|
87 |
+
label="Tokenization Statistics",
|
88 |
+
lines=4
|
89 |
+
)
|
90 |
+
|
91 |
+
plot_output = gr.Plot(
|
92 |
+
label="Token Length Distribution"
|
93 |
+
)
|
94 |
+
|
95 |
+
# Set up event handlers
|
96 |
+
tokenize_btn.click(
|
97 |
+
fn=demo.tokenize_text,
|
98 |
+
inputs=input_text,
|
99 |
+
outputs=[tokens_output, plot_output, stats_output]
|
100 |
+
)
|
101 |
+
|
102 |
+
decode_btn.click(
|
103 |
+
fn=demo.decode_tokens,
|
104 |
+
inputs=tokens_output,
|
105 |
+
outputs=original_output
|
106 |
+
)
|
107 |
+
|
108 |
+
# Add examples
|
109 |
+
gr.Examples(
|
110 |
+
examples=[
|
111 |
+
["हिंदी भाषा बहुत सुंदर है।"],
|
112 |
+
["भारत एक विशाल देश है। यहाँ की संस्कृति बहुत पुरानी है।"],
|
113 |
+
["मैं हिंदी में प्रोग्रामिंग सीख रहा हूं।"]
|
114 |
+
],
|
115 |
+
inputs=input_text
|
116 |
+
)
|
117 |
+
|
118 |
+
return interface
|
119 |
+
|
120 |
+
# Create and launch the demo
|
121 |
+
if __name__ == "__main__":
|
122 |
+
demo = create_demo()
|
123 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy==1.23.5
|
2 |
+
pandas==1.5.3
|
3 |
+
plotly==5.13.0
|
4 |
+
kagglehub
|
5 |
+
streamlit
|
6 |
+
beautifulsoup4
|
7 |
+
huggingface-hub>=0.19.0
|
8 |
+
tqdm
|
9 |
+
matplotlib
|
10 |
+
gitpython>=3.1.0
|
11 |
+
gradio>=4.0.0
|
tokenizer_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model_type": "hindi_bpe",
|
3 |
+
"vocab_size": 4477,
|
4 |
+
"max_token_length": 64,
|
5 |
+
"compression_ratio": 3.66,
|
6 |
+
"special_tokens": {
|
7 |
+
"pad_token": "",
|
8 |
+
"unk_token": "",
|
9 |
+
"mask_token": "",
|
10 |
+
},
|
11 |
+
"do_lower_case": false,
|
12 |
+
"strip_accents": false,
|
13 |
+
"tokenizer_class": "HindiBPE"
|
14 |
+
}
|