Text Generation
Transformers
Safetensors
llama
conversational
text-generation-inference
Inference Endpoints
File size: 10,525 Bytes
35923a9
3781c6c
8343602
9e1a1ec
 
 
 
8343602
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35923a9
 
93eb6eb
35923a9
9e1a1ec
35923a9
2a23d55
 
 
9e1a1ec
 
35923a9
93eb6eb
 
 
 
 
35923a9
 
 
9e1a1ec
 
 
35923a9
3e020a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35923a9
 
 
a840a3d
 
fbaa713
a840a3d
 
 
 
121b41e
1719e62
b7b3720
52c5409
a4f14de
 
a840a3d
a4f14de
a840a3d
 
 
 
 
 
 
9e1a1ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52c5409
9e1a1ec
 
 
d11fb56
 
8f558d6
 
 
 
d11fb56
 
 
 
 
629d716
 
d11fb56
 
 
 
8343602
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
---
license: llama3
library_name: transformers
datasets:
- aqua_rat
- microsoft/orca-math-word-problems-200k
- m-a-p/CodeFeedback-Filtered-Instruction
model-index:
- name: Smaug-Llama-3-70B-Instruct
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: ENEM Challenge (No Images)
      type: eduagarcia/enem_challenge
      split: train
      args:
        num_few_shot: 3
    metrics:
    - type: acc
      value: 77.89
      name: accuracy
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=abacusai/Smaug-Llama-3-70B-Instruct
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BLUEX (No Images)
      type: eduagarcia-temp/BLUEX_without_images
      split: train
      args:
        num_few_shot: 3
    metrics:
    - type: acc
      value: 69.54
      name: accuracy
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=abacusai/Smaug-Llama-3-70B-Instruct
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: OAB Exams
      type: eduagarcia/oab_exams
      split: train
      args:
        num_few_shot: 3
    metrics:
    - type: acc
      value: 63.64
      name: accuracy
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=abacusai/Smaug-Llama-3-70B-Instruct
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Assin2 RTE
      type: assin2
      split: test
      args:
        num_few_shot: 15
    metrics:
    - type: f1_macro
      value: 93.62
      name: f1-macro
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=abacusai/Smaug-Llama-3-70B-Instruct
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Assin2 STS
      type: eduagarcia/portuguese_benchmark
      split: test
      args:
        num_few_shot: 15
    metrics:
    - type: pearson
      value: 78.52
      name: pearson
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=abacusai/Smaug-Llama-3-70B-Instruct
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: FaQuAD NLI
      type: ruanchaves/faquad-nli
      split: test
      args:
        num_few_shot: 15
    metrics:
    - type: f1_macro
      value: 80.01
      name: f1-macro
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=abacusai/Smaug-Llama-3-70B-Instruct
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HateBR Binary
      type: ruanchaves/hatebr
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: f1_macro
      value: 91.78
      name: f1-macro
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=abacusai/Smaug-Llama-3-70B-Instruct
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: PT Hate Speech Binary
      type: hate_speech_portuguese
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: f1_macro
      value: 68.36
      name: f1-macro
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=abacusai/Smaug-Llama-3-70B-Instruct
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: tweetSentBR
      type: eduagarcia/tweetsentbr_fewshot
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: f1_macro
      value: 70.29
      name: f1-macro
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=abacusai/Smaug-Llama-3-70B-Instruct
      name: Open Portuguese LLM Leaderboard
---

# Smaug-Llama-3-70B-Instruct

### Built with Meta Llama 3


![image/png](https://cdn-uploads.huggingface.co/production/uploads/64c14f6b02e1f8f67c73bd05/ZxYuHKmU_AtuEJbGtuEBC.png)

This model was built using a new Smaug recipe  for improving performance on real world multi-turn conversations applied to 
[meta-llama/Meta-Llama-3-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct).

The model outperforms Llama-3-70B-Instruct substantially, and is on par with GPT-4-Turbo, on MT-Bench (see below).

EDIT: Smaug-Llama-3-70B-Instruct is the top open source model on Arena-Hard currently! It is also nearly on par with Claude Opus - see below.

We are conducting additional benchmark evaluations and will add those when available.

### Model Description

- **Developed by:** [Abacus.AI](https://abacus.ai)
- **License:** https://llama.meta.com/llama3/license/
- **Finetuned from model:** [meta-llama/Meta-Llama-3-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct).

## How to use

The prompt format is unchanged from Llama 3 70B Instruct.

### Use with transformers

See the snippet below for usage with Transformers:

```python
import transformers
import torch

model_id = "abacusai/Smaug-Llama-3-70B-Instruct"

pipeline = transformers.pipeline(
    "text-generation",
    model=model_id,
    model_kwargs={"torch_dtype": torch.bfloat16},
    device_map="auto",
)

messages = [
    {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
    {"role": "user", "content": "Who are you?"},
]

prompt = pipeline.tokenizer.apply_chat_template(
		messages, 
		tokenize=False, 
		add_generation_prompt=True
)

terminators = [
    pipeline.tokenizer.eos_token_id,
    pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
]

outputs = pipeline(
    prompt,
    max_new_tokens=256,
    eos_token_id=terminators,
    do_sample=True,
    temperature=0.6,
    top_p=0.9,
)
print(outputs[0]["generated_text"][len(prompt):])
```


## Evaluation

### Arena-Hard

Score vs selected others (sourced from: (https://lmsys.org/blog/2024-04-19-arena-hard/#full-leaderboard-with-gpt-4-turbo-as-judge)). GPT-4o and Gemini-1.5-pro-latest were missing from the original blob post, and we produced those numbers from a local run using the same methodology. 

| Model | Score | 95% Confidence Interval | Average Tokens |
| :---- | ---------: | ----------: | ------: |
| GPT-4-Turbo-2024-04-09 | 82.6  | (-1.8, 1.6)  | 662 |
| GPT-4o | 78.3  | (-2.4, 2.1)  | 685 |
| Gemini-1.5-pro-latest | 72.1  | (-2.3, 2.2)  | 630 |
| Claude-3-Opus-20240229 | 60.4  | (-3.3, 2.4)  | 541 |
| **Smaug-Llama-3-70B-Instruct** | 56.7  | (-2.2, 2.6)  | 661 |
| GPT-4-0314 | 50.0  | (-0.0, 0.0)  | 423 |
| Claude-3-Sonnet-20240229 | 46.8  | (-2.1, 2.2)  | 552 |
| Llama-3-70B-Instruct | 41.1  | (-2.5, 2.4)  | 583 |
| GPT-4-0613 | 37.9  | (-2.2, 2.0)  | 354 |
| Mistral-Large-2402 | 37.7 | (-1.9, 2.6)  | 400 |
| Mixtral-8x22B-Instruct-v0.1 | 36.4  | (-2.7, 2.9)  | 430 |
| Qwen1.5-72B-Chat | 36.1 | (-2.5, 2.2)  | 474 |
| Command-R-Plus | 33.1 | (-2.1, 2.2)  | 541 |
| Mistral-Medium | 31.9  | (-2.3, 2.4)  | 485 |
| GPT-3.5-Turbo-0613 | 24.8 | (-1.6, 2.0)  | 401 |

### MT-Bench

```
########## First turn ##########
                   score
model             turn
Smaug-Llama-3-70B-Instruct         1     9.40000                                                                                                                            
GPT-4-Turbo                        1     9.37500
Meta-Llama-3-70B-Instruct          1     9.21250 
########## Second turn ##########
                   score
model             turn
Smaug-Llama-3-70B-Instruct         2     9.0125
GPT-4-Turbo                        2     9.0000
Meta-Llama-3-70B-Instruct          2     8.8000
########## Average ##########
                 score
model
Smaug-Llama-3-70B-Instruct          9.206250
GPT-4-Turbo                         9.187500
Meta-Llama-3-70B-Instruct           9.006250
```

| Model | First turn | Second Turn | Average |
| :---- | ---------: | ----------: | ------: |
| **Smaug-Llama-3-70B-Instruct**  | 9.40 | 9.01 | 9.21 |
| GPT-4-Turbo | 9.38 |  9.00 | 9.19 |
| Meta-Llama-3-70B-Instruct | 9.21 |  8.80 | 9.01 |

### OpenLLM Leaderboard Manual Evaluation

| Model | ARC  | Hellaswag | MMLU | TruthfulQA | Winogrande | GSM8K* | Average |
| :---- | ---: | ------:   | ---: | ---:       | ---:       | ---:   | ---:   |
| Smaug-Llama-3-70B-Instruct | 70.6 | 86.1 | 79.2 | 62.5 | 83.5 | 90.5 | 78.7 |
| Llama-3-70B-Instruct | 71.4 | 85.7 | 80.0 | 61.8 | 82.9 | 91.1 | 78.8 |

**GSM8K** The GSM8K numbers quoted here are computed using a recent release
of the [LM Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness/).
The commit used by the leaderboard has a significant issue that impacts models that
tend to use `:` in their responses due to a bug in the stop word configuration for
GSM8K. The issue is covered in more detail in this
[GSM8K evaluation discussion](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard/discussions/770).
The score for both Llama-3 and this model are significantly different when evaluated
with the updated harness as the issue with stop words has been addressed.


This version of Smaug uses new techniques and new data compared to [Smaug-72B](https://huggingface.co/abacusai/Smaug-72B-v0.1), and more information will be released later on. For now, see the previous Smaug paper: https://arxiv.org/abs/2402.13228.


# Open Portuguese LLM Leaderboard Evaluation Results  

Detailed results can be found [here](https://huggingface.co/datasets/eduagarcia-temp/llm_pt_leaderboard_raw_results/tree/main/abacusai/Smaug-Llama-3-70B-Instruct) and on the [🚀 Open Portuguese LLM Leaderboard](https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard)

|          Metric          |  Value  |
|--------------------------|---------|
|Average                   |**77.07**|
|ENEM Challenge (No Images)|    77.89|
|BLUEX (No Images)         |    69.54|
|OAB Exams                 |    63.64|
|Assin2 RTE                |    93.62|
|Assin2 STS                |    78.52|
|FaQuAD NLI                |    80.01|
|HateBR Binary             |    91.78|
|PT Hate Speech Binary     |    68.36|
|tweetSentBR               |    70.29|