File size: 1,328 Bytes
8843aeb
 
 
 
 
 
e05766e
 
 
 
dea087d
750e329
a610c8f
750e329
 
 
 
94125ef
 
 
 
 
 
750e329
49b6d10
dea087d
49b6d10
 
dea087d
49b6d10
 
 
dea087d
fed3999
dea087d
49b6d10
 
 
 
 
 
dea087d
49b6d10
 
 
 
dea087d
49b6d10
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
---
license: apache-2.0
datasets:
- Intel/orca_dpo_pairs
- nvidia/HelpSteer
- jondurbin/truthy-dpo-v0.1
language:
- en
library_name: transformers
pipeline_tag: text-generation
---

### Mistral-7B-Forest-DPO
Introducing Mistral-7B-Forest-DPO, a LLM fine-tuned with base model mistralai/Mistral-7B-v0.1, using direct preference optimization.
This model showcases exceptional prowess across a spectrum of natural language processing (NLP) tasks. 

A mixture of the following datasets was used for fine-tuning.

1. Intel/orca_dpo_pairs
2. nvidia/HelpSteer
3. jondurbin/truthy-dpo-v0.1



💻 Usage

```python
!pip install -qU transformers bitsandbytes accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "abhishekchohan/mistral-7B-forest-dpo"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)

messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])

```