File size: 7,448 Bytes
c19ac70
a871bfd
 
c19ac70
a871bfd
c19ac70
 
 
 
 
a871bfd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c19ac70
 
 
 
c3b37bc
 
b775c26
c19ac70
 
 
afe7dee
 
 
 
 
 
 
 
 
c9af20d
 
 
 
 
 
 
afe7dee
c9af20d
afe7dee
 
 
 
c9af20d
 
afe7dee
 
c19ac70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9af20d
afe7dee
c19ac70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f41e5a
c19ac70
 
 
9f41e5a
 
a871bfd
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
---
language:
- en
license: apache-2.0
library_name: transformers
tags:
- moe
- merge
- abideen/NexoNimbus-7B
- mlabonne/NeuralMarcoro14-7B
model-index:
- name: NexoNimbus-MoE-2x7B
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 66.81
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abideen/NexoNimbus-MoE-2x7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 85.66
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abideen/NexoNimbus-MoE-2x7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 64.51
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abideen/NexoNimbus-MoE-2x7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 53.06
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abideen/NexoNimbus-MoE-2x7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 81.53
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abideen/NexoNimbus-MoE-2x7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 53.53
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abideen/NexoNimbus-MoE-2x7B
      name: Open LLM Leaderboard
---

# NexoNimbus-MoE-2x7B

![image/png](https://cdn-uploads.huggingface.co/production/uploads/64e380b2e12618b261fa6ba0/_bzC6xkVIHW0tSigBxUI3.png)

NexoNimbus-MoE-2x7B is a Mixure of Experts (MoE) made with the following models:
* [abideen/NexoNimbus-7B](https://huggingface.co/abideen/NexoNimbus-7B)
* [mlabonne/NeuralMarcoro14-7B](https://huggingface.co/mlabonne/NeuralMarcoro14-7B)

🏆 Evaluation
NexoNimbus-MoE-2x7B is the 10th best-performing 13B LLM on the Open LLM Leaderboard:


![image/png](https://cdn-uploads.huggingface.co/production/uploads/64e380b2e12618b261fa6ba0/z8E728H5fJqVtKNeGuwjX.png)


|    Task     |Version| Metric |Value|   |Stderr|
|-------------|------:|--------|----:|---|-----:|
|arc_challenge|      0|acc     |62.28|±  |  1.41|
|             |       |acc_norm|66.80|±  |  1.37|
|hellaswag    |      0|acc     |66.83|±  |  0.46|
|             |       |acc_norm|85.66|±  |  0.34|
|gsm8k        |      0|acc     |53.52|±  |  1.37|
|winogrande   |      0|acc     |81.53|±  |  1.09|
|mmlu         |      0|acc     |64.51|±  |  1.00|

Average: 67.51%

### TruthfulQA
|    Task     |Version|Metric|Value|   |Stderr|
|-------------|------:|------|----:|---|-----:|
|truthfulqa_mc|      1|mc1   |35.98|±  |  1.68|
|             |       |mc2   |53.05|±  |  1.53|


## 🧩 Configuration

```yaml
base_model: teknium/OpenHermes-2.5-Mistral-7B
gate_mode: hidden
dtype: bfloat16
experts:
  - source_model: abideen/NexoNimbus-7B
    positive_prompts:
    - "Mathematics"
    - "Physics"
    - "Chemistry"
    - "Biology"
    - "Medicine"
    - "Engineering"
    - "Computer Science"

    negative_prompts:
    - "History"
    - "Philosophy"
    - "Linguistics"
    - "Literature"
    - "Art and Art History"
    - "Music Theory and Composition"
    - "Performing Arts (Theater, Dance)"

  - source_model: mlabonne/NeuralMarcoro14-7B 
    positive_prompts:
    - "Earth Sciences (Geology, Meteorology, Oceanography)"
    - "Environmental Science"
    - "Astronomy and Space Science"
    - "Psychology"
    - "Sociology"
    - "Anthropology"
    - "Political Science"
    - "Economics"
    negative_prompts:
    - "Education"
    - "Law"
    - "Theology and Religious Studies"
    - "Communication Studies"
    - "Business and Management"
    - "Agricultural Sciences"
    - "Nutrition and Food Science"
    - "Sports Science"
```

## 💻 Usage

Here's a [Colab notebook](https://colab.research.google.com/drive/1B1Q7vO95cDkEJbKIPhOWr6exB9-Q_lr-?usp=sharing) to run NexoNimbus-MoE-2x7B in 4-bit precision on a free T4 GPU.

```python
!pip install -qU transformers bitsandbytes accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "abideen/NexoNimbus-MoE-2x7B"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)

messages = [{"role": "user", "content": "Explain what is data science."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```

"Data science is an interdisciplinary field that combines mathematics, statistics, computer science, and domain expertise in order to extract meaningful insights and knowledge from structured and unstructured data. It involves the process of collecting, cleaning, transforming, analyzing, and visualizing data in order to identify patterns, trends, and relationships that can inform decision-making and drive business strategies. Data scientists use various tools and techniques, such as machine learning, deep learning, and natural language processing, to develop predictive models, optimize processes, and automate decision-making. The field of data science is rapidly evolving as more and more data is generated and the demand for data-driven insights continues to grow."
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_abideen__NexoNimbus-MoE-2x7B)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |67.51|
|AI2 Reasoning Challenge (25-Shot)|66.81|
|HellaSwag (10-Shot)              |85.66|
|MMLU (5-Shot)                    |64.51|
|TruthfulQA (0-shot)              |53.06|
|Winogrande (5-shot)              |81.53|
|GSM8k (5-shot)                   |53.53|