File size: 10,422 Bytes
389a649
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201

import os
import time
import wandb
import torch
import argparse
from datasets import load_dataset
from typing import List, Dict, Union
from transformers import (
    AutoTokenizer,
    AutoModelForCausalLM,
    TrainingArguments,
    DataCollatorForLanguageModeling
)

from src.args import default_args
from src.orpo_trainer import ORPOTrainer
from src.utils import preprocess_logits_for_metrics, dataset_split_selector

class ORPO(object):
    def __init__(self, args) -> None:
        self.start = time.gmtime()
        self.args = args

        # Load Tokenizer
        print(">>> 1. Loading Tokenizer")
        self.tokenizer = AutoTokenizer.from_pretrained(self.args.model_name, cache_dir=self.args.cache_dir)
        if self.tokenizer.chat_template is None:
            self.tokenizer.chat_template = "{% for message in messages %}\n{% if message['role'] == 'user' %}\n{{ '<|user|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'system' %}\n{{ '<|system|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'assistant' %}\n{{ '<|assistant|>\n'  + message['content'] + eos_token }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '<|assistant|>' }}\n{% endif %}\n{% endfor %}"
            print("     1-1. Chat Template Applied (<|user|> <|assistant|>)")
        else:
            pass
        self.tokenizer.pad_token_id = self.tokenizer.eos_token_id

        # Load Model
        print(">>> 2. Loading Model")
        if self.args.flash_attention_2:
            self.model = AutoModelForCausalLM.from_pretrained(self.args.model_name, 
                                                              cache_dir=self.args.cache_dir,
                                                              torch_dtype=torch.bfloat16,
                                                              attn_implementation="flash_attention_2")
        else:
            self.model = AutoModelForCausalLM.from_pretrained(self.args.model_name, 
                                                              cache_dir=self.args.cache_dir,
                                                              torch_dtype=torch.bfloat16)
                                                          
        # Load Dataset
        print(">>> 3. Loading Dataset")
        self.data = load_dataset(self.args.data_name, cache_dir=self.args.cache_dir)

        # Preprocess Dataset
        print(">>> 4. Filtering and Preprocessing Dataset")
        data_split = dataset_split_selector(self.data)

        if len(data_split) == 1:
            self.is_test = False
            train_split = data_split[0]
        else:
            self.is_test = True
            train_split = data_split[0]
            test_split = data_split[0]

            test = self.data[test_split].filter(self.filter_dataset)
            self.test = test.map(self.preprocess_dataset, batched=True, num_proc=self.args.num_proc, remove_columns=self.data[test_split].column_names)       

        train = self.data[train_split].filter(self.filter_dataset)
        print(f"\n\n>>> {len(train)} / {len(self.data[train_split])} rows left after filtering by prompt length.")
        self.train = train.map(self.preprocess_dataset, batched=True, num_proc=self.args.num_proc, remove_columns=self.data[train_split].column_names)                       
                
        # Set WANDB & Logging Configurations
        self.run_name = f"{self.args.model_name.split('/')[-1]}-{self.args.data_name.split('/')[-1]}-ORPO-{self.start.tm_mday}-{self.start.tm_hour}-{self.start.tm_min}"
        self.save_dir = os.path.join('./checkpoints/', f"{self.args.data_name.split('/')[-1]}/{self.run_name}")
        self.log_dir = os.path.join('./checkpoints/', f"{self.args.data_name.split('/')[-1]}/{self.run_name}/logs")
        
        os.makedirs(self.save_dir, exist_ok=True)
        os.makedirs(self.log_dir, exist_ok=True)

    def preprocess_dataset(self, examples: Union[List, Dict]):
        if 'instruction' in examples.keys():
            prompt_key = 'instruction'
            prompt = [self.tokenizer.apply_chat_template([{'role': 'user', 'content': item}], tokenize=False, add_generation_prompt=True) for item in examples[prompt_key]]
            chosen = [self.tokenizer.apply_chat_template([{'role': 'user', 'content': item_prompt}, {'role': 'assistant', 'content': item_chosen}], tokenize=False) for item_prompt, item_chosen in zip(examples[prompt_key], examples['chosen'])]
            rejected = [self.tokenizer.apply_chat_template([{'role': 'user', 'content': item_prompt}, {'role': 'assistant', 'content': item_rejected}], tokenize=False) for item_prompt, item_rejected in zip(examples[prompt_key], examples['rejected'])]
        else:
            prompt = [self.tokenizer.apply_chat_template([item[0]], tokenize=False, add_generation_prompt=True) for item in examples['chosen']]
            chosen = [self.tokenizer.apply_chat_template(item, tokenize=False) for item in examples['chosen']]
            rejected = [self.tokenizer.apply_chat_template(item, tokenize=False) for item in examples['rejected']]
    
        model_inputs = self.tokenizer(prompt,
                                      max_length=self.args.response_max_length,
                                      padding='max_length',
                                      truncation=True,
                                      return_tensors='pt')
        pos_labels = self.tokenizer(chosen,
                                    max_length=self.args.response_max_length,
                                    padding='max_length',
                                    truncation=True,
                                    return_tensors='pt')
        neg_labels = self.tokenizer(rejected,
                                    max_length=self.args.response_max_length,
                                    padding='max_length',
                                    truncation=True,
                                    return_tensors='pt') 
                
        model_inputs['positive_input_ids'] = pos_labels['input_ids']
        model_inputs['positive_attention_mask'] = pos_labels['attention_mask']
        
        model_inputs['negative_input_ids'] = neg_labels['input_ids']
        model_inputs['negative_attention_mask'] = neg_labels['attention_mask']
        
        return model_inputs

    def filter_dataset(self, examples: Union[List, Dict]):
        if 'instruction' in examples.keys():
            query = examples['instruction']
            prompt_length = self.tokenizer.apply_chat_template([{'content': query, 'role': 'user'}], tokenize=True, add_generation_prompt=True, return_tensors='pt').size(-1)
        else:
            prompt_length = self.tokenizer.apply_chat_template([examples['chosen'][0]], tokenize=True, add_generation_prompt=True, return_tensors='pt').size(-1)  
           
        if prompt_length < self.args.prompt_max_length:    
            return True
        else:
            return False

    def prepare_trainer(self):
        wandb.init(name=self.run_name)
        arguments = TrainingArguments(
            torch_compile=self.args.torch_compile,
            output_dir=self.save_dir,  # The output directory
            logging_dir=self.log_dir,
            logging_steps=50,
            learning_rate=self.args.lr,
            overwrite_output_dir=True,  # overwrite the content of the output directory
            num_train_epochs=self.args.num_train_epochs,  # number of training epochs
            per_device_train_batch_size=self.args.per_device_train_batch_size,  # batch size for training
            per_device_eval_batch_size=self.args.per_device_eval_batch_size,  # batch size for evaluation
            evaluation_strategy=self.args.evaluation_strategy,  # batch size for evaluation
            save_strategy=self.args.evaluation_strategy,
            optim=self.args.optim,
            warmup_steps=self.args.warmup_steps,
            gradient_accumulation_steps=self.args.gradient_accumulation_steps,
            gradient_checkpointing=True, #if ('llama' in self.args.model_name.lower()) or ('mistral' in self.args.model_name.lower()) else False,
            gradient_checkpointing_kwargs={'use_reentrant':True},
            load_best_model_at_end=True,
            do_train=True,
            do_eval= self.is_test,
            lr_scheduler_type=self.args.lr_scheduler_type,
            remove_unused_columns=False,
            report_to='wandb',
            run_name=self.run_name,
            bf16=True
        )
        
        data_collator = DataCollatorForLanguageModeling(tokenizer=self.tokenizer, mlm=False)
        
        self.trainer = ORPOTrainer(
            model=self.model,
            alpha=self.args.alpha,
            pad=self.tokenizer.pad_token_id,
            args=arguments,
            train_dataset=self.train,
            eval_dataset=self.test if self.is_test else None,
            data_collator=data_collator,
            preprocess_logits_for_metrics=preprocess_logits_for_metrics
        )
        
    def run(self):
        print(">>> 5. Preparing ORPOTrainer")
        self.prepare_trainer()
        self.trainer.train()

        # Saving code for FSDP
        if self.trainer.is_fsdp_enabled:
            self.trainer.accelerator.state.fsdp_plugin.set_state_dict_type("FULL_STATE_DICT")
        self.trainer.save_model()
        
        
if __name__ == '__main__':
    parser = argparse.ArgumentParser("ORPO")
    args = default_args(parser)

    # Set WANDB configurations
    if args.wandb_entity is not None and args.wandb_project_name is not None:
        os.environ["WANDB_ENTITY"] = args.wandb_entity
        os.environ["WANDB_PROJECT"] = args.wandb_project_name
    else:
        pass
    os.environ["TOKENIZERS_PARALLELISM"] = 'false'

    print("================================================================================================\n")
    print(f">>> Fine-tuning {args.model_name} with ORPO on {args.data_name}\n")
    print("================================================================================================")
    print("\n\n>>> Summary:")
    print(f"    - Lambda              : {args.alpha}")
    print(f"    - Training Epochs     : {args.num_train_epochs}")
    print(f"    - Prompt Max Length   : {args.prompt_max_length}")
    print(f"    - Response Max Length : {args.response_max_length}")

    item = ORPO(args=args)
    item.run()