abideen commited on
Commit
e770dbf
Β·
verified Β·
1 Parent(s): 78b8357

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -6
README.md CHANGED
@@ -15,7 +15,7 @@ language:
15
  *phi2-pro* is a fine-tuned version of **[microsoft/phi-2](https://huggingface.co/microsoft/phi-2)** on **[argilla/dpo-mix-7k](https://huggingface.co/datasets/argilla/dpo-mix-7k)**
16
  preference dataset using *Odds Ratio Preference Optimization (ORPO)*. The model has been trained for 1 epoch.
17
 
18
- ## LazyORPO
19
 
20
  This model has been trained using **[LazyORPO](https://colab.research.google.com/drive/19ci5XIcJDxDVPY2xC1ftZ5z1kc2ah_rx?usp=sharing)**. A colab notebook that makes the training
21
  process much easier. Based on [ORPO paper](https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fhuggingface.co%2Fpapers%2F2403.07691)
@@ -23,7 +23,7 @@ process much easier. Based on [ORPO paper](https://colab.research.google.com/cor
23
 
24
  ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64e380b2e12618b261fa6ba0/2h3guPdFocisjFClFr0Kh.png)
25
 
26
- #### What is ORPO?
27
 
28
  Odds Ratio Preference Optimization (ORPO) proposes a new method to train LLMs by combining SFT and Alignment into a new objective (loss function), achieving state of the art results.
29
  Some highlights of this techniques are:
@@ -34,9 +34,9 @@ Some highlights of this techniques are:
34
  * πŸ“Š Mistral ORPO achieves 12.20% on AlpacaEval2.0, 66.19% on IFEval, and 7.32 on MT-Bench out Hugging Face Zephyr Beta
35
 
36
 
37
- #### Usage
38
 
39
- python
40
  import torch
41
  from transformers import AutoModelForCausalLM, AutoTokenizer
42
 
@@ -54,8 +54,8 @@ outputs = model.generate(**inputs, max_length=200)
54
  text = tokenizer.batch_decode(outputs)[0]
55
  print(text)
56
 
 
57
 
58
-
59
- ## Evaluation
60
 
61
  ### COMING SOON
 
15
  *phi2-pro* is a fine-tuned version of **[microsoft/phi-2](https://huggingface.co/microsoft/phi-2)** on **[argilla/dpo-mix-7k](https://huggingface.co/datasets/argilla/dpo-mix-7k)**
16
  preference dataset using *Odds Ratio Preference Optimization (ORPO)*. The model has been trained for 1 epoch.
17
 
18
+ ## πŸ’₯ LazyORPO
19
 
20
  This model has been trained using **[LazyORPO](https://colab.research.google.com/drive/19ci5XIcJDxDVPY2xC1ftZ5z1kc2ah_rx?usp=sharing)**. A colab notebook that makes the training
21
  process much easier. Based on [ORPO paper](https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fhuggingface.co%2Fpapers%2F2403.07691)
 
23
 
24
  ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64e380b2e12618b261fa6ba0/2h3guPdFocisjFClFr0Kh.png)
25
 
26
+ #### 🎭 What is ORPO?
27
 
28
  Odds Ratio Preference Optimization (ORPO) proposes a new method to train LLMs by combining SFT and Alignment into a new objective (loss function), achieving state of the art results.
29
  Some highlights of this techniques are:
 
34
  * πŸ“Š Mistral ORPO achieves 12.20% on AlpacaEval2.0, 66.19% on IFEval, and 7.32 on MT-Bench out Hugging Face Zephyr Beta
35
 
36
 
37
+ #### πŸ’» Usage
38
 
39
+ ```python
40
  import torch
41
  from transformers import AutoModelForCausalLM, AutoTokenizer
42
 
 
54
  text = tokenizer.batch_decode(outputs)[0]
55
  print(text)
56
 
57
+ ```
58
 
59
+ ## πŸ† Evaluation
 
60
 
61
  ### COMING SOON