acul3 commited on
Commit
d0cebf8
·
1 Parent(s): 8e649e2

init files

Browse files
config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./configs/base",
3
+ "architectures": [
4
+ "RobertaForMaskedLM"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "transformers_version": "4.22.0.dev0",
24
+ "type_vocab_size": 1,
25
+ "use_cache": true,
26
+ "vocab_size": 50265
27
+ }
config.py ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ from transformers import RobertaConfig
3
+ config = RobertaConfig.from_pretrained("roberta-large")
4
+ config.save_pretrained("./configs/large")
5
+
6
+ config = RobertaConfig.from_pretrained("roberta-base")
7
+ config.save_pretrained("./configs/base")
configs/base/config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "RobertaForMaskedLM"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "bos_token_id": 0,
7
+ "eos_token_id": 2,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "roberta",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "position_embedding_type": "absolute",
21
+ "transformers_version": "4.9.0.dev0",
22
+ "type_vocab_size": 1,
23
+ "use_cache": true,
24
+ "vocab_size": 50265
25
+ }
configs/base/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
configs/large/config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "RobertaForMaskedLM"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "bos_token_id": 0,
7
+ "eos_token_id": 2,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 1024,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 4096,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "roberta",
17
+ "num_attention_heads": 16,
18
+ "num_hidden_layers": 24,
19
+ "pad_token_id": 1,
20
+ "position_embedding_type": "absolute",
21
+ "transformers_version": "4.9.0.dev0",
22
+ "type_vocab_size": 1,
23
+ "use_cache": true,
24
+ "vocab_size": 50265
25
+ }
configs/large/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
convert.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ import tempfile
3
+
4
+ import jax
5
+ from jax import numpy as jnp
6
+ from transformers import AutoTokenizer, FlaxRobertaForMaskedLM, RobertaForMaskedLM
7
+
8
+
9
+ def to_f32(t):
10
+ return jax.tree_map(lambda x: x.astype(jnp.float32) if x.dtype == jnp.bfloat16 else x, t)
11
+
12
+
13
+ def main():
14
+ # Saving extra files from config.json and tokenizer.json files
15
+ tokenizer = AutoTokenizer.from_pretrained("./")
16
+ tokenizer.save_pretrained("./")
17
+
18
+ # Temporary saving bfloat16 Flax model into float32
19
+ tmp = tempfile.mkdtemp()
20
+ flax_model = FlaxRobertaForMaskedLM.from_pretrained("./")
21
+ flax_model.params = to_f32(flax_model.params)
22
+ flax_model.save_pretrained(tmp)
23
+ # Converting float32 Flax to PyTorch
24
+ model = RobertaForMaskedLM.from_pretrained(tmp, from_flax=True)
25
+ model.save_pretrained("./", save_config=False)
26
+
27
+
28
+ if __name__ == "__main__":
29
+ main()
run.sh ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # From https://arxiv.org/pdf/1907.11692.pdf
2
+ python3 -c "import jax; print('TPUs', jax.device_count())"
3
+ python3 run_mlm_flax.py \
4
+ --output_dir="./outputs" \
5
+ --model_type="roberta" \
6
+ --config_name="./configs/base" \
7
+ --tokenizer_name="./" \
8
+ --dataset_name="munggok/KoPI" \
9
+ --cache_dir="/data/cache" \
10
+ --dataset_config_name="full" \
11
+ --max_seq_length="512" \
12
+ --pad_to_max_length \
13
+ --per_device_train_batch_size="64" \
14
+ --per_device_eval_batch_size="64" \
15
+ --preprocessing_num_workers="96" \
16
+ --adam_beta1="0.9" \
17
+ --adam_beta2="0.98" \
18
+ --adam_epsilon="1e-6" \
19
+ --learning_rate="8e-5" \
20
+ --num_train_epochs="15" \
21
+ --weight_decay="0.01" \
22
+ --save_strategy="steps" \
23
+ --save_steps="10000" \
24
+ --save_total_limit='5' \
25
+ --warmup_steps="5000" \
26
+ --overwrite_output_dir \
27
+ --eval_steps="10000" \
28
+ --logging_steps="500" \
29
+ --dtype="bfloat16" 2>&1 | tee run.log
run_mlm_flax.py ADDED
@@ -0,0 +1,1003 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding=utf-8
3
+ # Copyright 2021 The HuggingFace Team All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """
17
+ Fine-tuning the library models for masked language modeling (BERT, ALBERT, RoBERTa...) with whole word masking on a
18
+ text file or a dataset.
19
+ Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
20
+ https://huggingface.co/models?filter=fill-mask
21
+ """
22
+ import json
23
+ import logging
24
+ import math
25
+ import os
26
+ import sys
27
+ import time
28
+ from dataclasses import asdict, dataclass, field
29
+ from enum import Enum
30
+ from itertools import chain
31
+ from flax.serialization import from_bytes, to_bytes
32
+ import shutil
33
+
34
+ # You can also adapt this script on your own masked language modeling task. Pointers for this are left as comments.
35
+ from pathlib import Path
36
+ from typing import Dict, List, Optional, Tuple,Union
37
+
38
+ import numpy as np
39
+ from datasets import load_dataset
40
+ from tqdm import tqdm
41
+
42
+ import flax
43
+ import jax
44
+ import jax.numpy as jnp
45
+ import optax
46
+ from flax import jax_utils, traverse_util
47
+ from flax.jax_utils import pad_shard_unpad
48
+ from flax.training import train_state
49
+ from flax.training.common_utils import get_metrics, onehot, shard
50
+ from huggingface_hub import Repository
51
+ from transformers import (
52
+ CONFIG_MAPPING,
53
+ FLAX_MODEL_FOR_MASKED_LM_MAPPING,
54
+ AutoConfig,
55
+ AutoTokenizer,
56
+ FlaxAutoModelForMaskedLM,
57
+ HfArgumentParser,
58
+ PreTrainedTokenizerBase,
59
+ TensorType,
60
+ is_tensorboard_available,
61
+ set_seed,
62
+ )
63
+ from transformers.utils import get_full_repo_name, send_example_telemetry
64
+ from transformers.trainer_utils import (
65
+ IntervalStrategy,
66
+
67
+ )
68
+ from transformers.file_utils import PushToHubMixin
69
+
70
+ MODEL_CONFIG_CLASSES = list(FLAX_MODEL_FOR_MASKED_LM_MAPPING.keys())
71
+ MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
72
+
73
+
74
+ @dataclass
75
+ class TrainingArguments:
76
+ output_dir: str = field(
77
+ metadata={"help": "The output directory where the model predictions and checkpoints will be written."},
78
+ )
79
+ overwrite_output_dir: bool = field(
80
+ default=False,
81
+ metadata={
82
+ "help": (
83
+ "Overwrite the content of the output directory. "
84
+ "Use this to continue training if output_dir points to a checkpoint directory."
85
+ )
86
+ },
87
+ )
88
+ do_train: bool = field(default=False, metadata={"help": "Whether to run training."})
89
+ do_eval: bool = field(default=False, metadata={"help": "Whether to run eval on the dev set."})
90
+ per_device_train_batch_size: int = field(
91
+ default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for training."}
92
+ )
93
+ per_device_eval_batch_size: int = field(
94
+ default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for evaluation."}
95
+ )
96
+ learning_rate: float = field(default=5e-5, metadata={"help": "The initial learning rate for AdamW."})
97
+ weight_decay: float = field(default=0.0, metadata={"help": "Weight decay for AdamW if we apply some."})
98
+ adam_beta1: float = field(default=0.9, metadata={"help": "Beta1 for AdamW optimizer"})
99
+ adam_beta2: float = field(default=0.999, metadata={"help": "Beta2 for AdamW optimizer"})
100
+ adam_epsilon: float = field(default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."})
101
+ adafactor: bool = field(default=False, metadata={"help": "Whether or not to replace AdamW by Adafactor."})
102
+ num_train_epochs: float = field(default=3.0, metadata={"help": "Total number of training epochs to perform."})
103
+ warmup_steps: int = field(default=0, metadata={"help": "Linear warmup over warmup_steps."})
104
+ logging_steps: int = field(default=500, metadata={"help": "Log every X updates steps."})
105
+ save_steps: int = field(default=10000, metadata={"help": "Save checkpoint every X updates steps."})
106
+ eval_steps: int = field(default=None, metadata={"help": "Run an evaluation every X steps."})
107
+ seed: int = field(default=42, metadata={"help": "Random seed that will be set at the beginning of training."})
108
+ save_strategy: Union[IntervalStrategy, str] = field(
109
+ default="steps",
110
+ metadata={"help": "The checkpoint save strategy to use."},
111
+ )
112
+ save_total_limit: Optional[int] = field(
113
+ default=None,
114
+ metadata={
115
+ "help": (
116
+ "Limit the total amount of checkpoints. "
117
+ "Deletes the older checkpoints in the output_dir. Default is unlimited checkpoints"
118
+ )
119
+ },
120
+ )
121
+ push_to_hub: bool = field(
122
+ default=False, metadata={"help": "Whether or not to upload the trained model to the model hub after training."}
123
+ )
124
+ hub_model_id: str = field(
125
+ default=None, metadata={"help": "The name of the repository to keep in sync with the local `output_dir`."}
126
+ )
127
+ hub_token: str = field(default=None, metadata={"help": "The token to use to push to the Model Hub."})
128
+ gradient_checkpointing: bool = field(
129
+ default=False,
130
+ metadata={
131
+ "help": "If True, use gradient checkpointing to save memory at the expense of slower backward pass."
132
+ },
133
+ )
134
+
135
+ def __post_init__(self):
136
+ if self.output_dir is not None:
137
+ self.output_dir = os.path.expanduser(self.output_dir)
138
+
139
+ def to_dict(self):
140
+ """
141
+ Serializes this instance while replace `Enum` by their values (for JSON serialization support). It obfuscates
142
+ the token values by removing their value.
143
+ """
144
+ d = asdict(self)
145
+ for k, v in d.items():
146
+ if isinstance(v, Enum):
147
+ d[k] = v.value
148
+ if isinstance(v, list) and len(v) > 0 and isinstance(v[0], Enum):
149
+ d[k] = [x.value for x in v]
150
+ if k.endswith("_token"):
151
+ d[k] = f"<{k.upper()}>"
152
+ return d
153
+
154
+
155
+ @dataclass
156
+ class ModelArguments:
157
+ """
158
+ Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
159
+ """
160
+
161
+ model_name_or_path: Optional[str] = field(
162
+ default=None,
163
+ metadata={
164
+ "help": (
165
+ "The model checkpoint for weights initialization.Don't set if you want to train a model from scratch."
166
+ )
167
+ },
168
+ )
169
+ model_type: Optional[str] = field(
170
+ default=None,
171
+ metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
172
+ )
173
+ config_name: Optional[str] = field(
174
+ default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
175
+ )
176
+ tokenizer_name: Optional[str] = field(
177
+ default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
178
+ )
179
+ cache_dir: Optional[str] = field(
180
+ default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
181
+ )
182
+ use_fast_tokenizer: bool = field(
183
+ default=True,
184
+ metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
185
+ )
186
+ dtype: Optional[str] = field(
187
+ default="float32",
188
+ metadata={
189
+ "help": (
190
+ "Floating-point format in which the model weights should be initialized and trained. Choose one of"
191
+ " `[float32, float16, bfloat16]`."
192
+ )
193
+ },
194
+ )
195
+ use_auth_token: bool = field(
196
+ default=False,
197
+ metadata={
198
+ "help": (
199
+ "Will use the token generated when running `huggingface-cli login` (necessary to use this script "
200
+ "with private models)."
201
+ )
202
+ },
203
+ )
204
+
205
+
206
+ @dataclass
207
+ class DataTrainingArguments:
208
+ """
209
+ Arguments pertaining to what data we are going to input our model for training and eval.
210
+ """
211
+
212
+ dataset_name: Optional[str] = field(
213
+ default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
214
+ )
215
+ dataset_config_name: Optional[str] = field(
216
+ default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
217
+ )
218
+ train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
219
+ validation_file: Optional[str] = field(
220
+ default=None,
221
+ metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
222
+ )
223
+ train_ref_file: Optional[str] = field(
224
+ default=None,
225
+ metadata={"help": "An optional input train ref data file for whole word masking in Chinese."},
226
+ )
227
+ validation_ref_file: Optional[str] = field(
228
+ default=None,
229
+ metadata={"help": "An optional input validation ref data file for whole word masking in Chinese."},
230
+ )
231
+ overwrite_cache: bool = field(
232
+ default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
233
+ )
234
+ validation_split_percentage: Optional[int] = field(
235
+ default=2,
236
+ metadata={
237
+ "help": "The percentage of the train set used as validation set in case there's no validation split"
238
+ },
239
+ )
240
+ max_seq_length: Optional[int] = field(
241
+ default=None,
242
+ metadata={
243
+ "help": (
244
+ "The maximum total input sequence length after tokenization. Sequences longer "
245
+ "than this will be truncated. Default to the max input length of the model."
246
+ )
247
+ },
248
+ )
249
+ preprocessing_num_workers: Optional[int] = field(
250
+ default=None,
251
+ metadata={"help": "The number of processes to use for the preprocessing."},
252
+ )
253
+ mlm_probability: float = field(
254
+ default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}
255
+ )
256
+ pad_to_max_length: bool = field(
257
+ default=False,
258
+ metadata={
259
+ "help": (
260
+ "Whether to pad all samples to `max_seq_length`. "
261
+ "If False, will pad the samples dynamically when batching to the maximum length in the batch."
262
+ )
263
+ },
264
+ )
265
+ line_by_line: bool = field(
266
+ default=False,
267
+ metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."},
268
+ )
269
+
270
+ def __post_init__(self):
271
+ if self.dataset_name is None and self.train_file is None and self.validation_file is None:
272
+ raise ValueError("Need either a dataset name or a training/validation file.")
273
+ else:
274
+ if self.train_file is not None:
275
+ extension = self.train_file.split(".")[-1]
276
+ assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
277
+ if self.validation_file is not None:
278
+ extension = self.validation_file.split(".")[-1]
279
+ assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."
280
+
281
+
282
+ @flax.struct.dataclass
283
+ class FlaxDataCollatorForLanguageModeling:
284
+ """
285
+ Data collator used for language modeling. Inputs are dynamically padded to the maximum length of a batch if they
286
+ are not all of the same length.
287
+ Args:
288
+ tokenizer (:class:`~transformers.PreTrainedTokenizer` or :class:`~transformers.PreTrainedTokenizerFast`):
289
+ The tokenizer used for encoding the data.
290
+ mlm_probability (:obj:`float`, `optional`, defaults to 0.15):
291
+ The probability with which to (randomly) mask tokens in the input.
292
+ .. note::
293
+ For best performance, this data collator should be used with a dataset having items that are dictionaries or
294
+ BatchEncoding, with the :obj:`"special_tokens_mask"` key, as returned by a
295
+ :class:`~transformers.PreTrainedTokenizer` or a :class:`~transformers.PreTrainedTokenizerFast` with the
296
+ argument :obj:`return_special_tokens_mask=True`.
297
+ """
298
+
299
+ tokenizer: PreTrainedTokenizerBase
300
+ mlm_probability: float = 0.15
301
+
302
+ def __post_init__(self):
303
+ if self.tokenizer.mask_token is None:
304
+ raise ValueError(
305
+ "This tokenizer does not have a mask token which is necessary for masked language modeling. "
306
+ "You should pass `mlm=False` to train on causal language modeling instead."
307
+ )
308
+
309
+ def __call__(self, examples: List[Dict[str, np.ndarray]], pad_to_multiple_of: int) -> Dict[str, np.ndarray]:
310
+ # Handle dict or lists with proper padding and conversion to tensor.
311
+ batch = self.tokenizer.pad(examples, pad_to_multiple_of=pad_to_multiple_of, return_tensors=TensorType.NUMPY)
312
+
313
+ # If special token mask has been preprocessed, pop it from the dict.
314
+ special_tokens_mask = batch.pop("special_tokens_mask", None)
315
+
316
+ batch["input_ids"], batch["labels"] = self.mask_tokens(
317
+ batch["input_ids"], special_tokens_mask=special_tokens_mask
318
+ )
319
+ return batch
320
+
321
+ def mask_tokens(
322
+ self, inputs: np.ndarray, special_tokens_mask: Optional[np.ndarray]
323
+ ) -> Tuple[np.ndarray, np.ndarray]:
324
+ """
325
+ Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original.
326
+ """
327
+ labels = inputs.copy()
328
+ # We sample a few tokens in each sequence for MLM training (with probability `self.mlm_probability`)
329
+ probability_matrix = np.full(labels.shape, self.mlm_probability)
330
+ special_tokens_mask = special_tokens_mask.astype("bool")
331
+
332
+ probability_matrix[special_tokens_mask] = 0.0
333
+ masked_indices = np.random.binomial(1, probability_matrix).astype("bool")
334
+ labels[~masked_indices] = -100 # We only compute loss on masked tokens
335
+
336
+ # 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
337
+ indices_replaced = np.random.binomial(1, np.full(labels.shape, 0.8)).astype("bool") & masked_indices
338
+ inputs[indices_replaced] = self.tokenizer.convert_tokens_to_ids(self.tokenizer.mask_token)
339
+
340
+ # 10% of the time, we replace masked input tokens with random word
341
+ indices_random = np.random.binomial(1, np.full(labels.shape, 0.5)).astype("bool")
342
+ indices_random &= masked_indices & ~indices_replaced
343
+
344
+ random_words = np.random.randint(self.tokenizer.vocab_size, size=labels.shape, dtype="i4")
345
+ inputs[indices_random] = random_words[indices_random]
346
+
347
+ # The rest of the time (10% of the time) we keep the masked input tokens unchanged
348
+ return inputs, labels
349
+
350
+
351
+ def generate_batch_splits(samples_idx: np.ndarray, batch_size: int, drop_last=True) -> np.ndarray:
352
+ """Generate batches of data for a specified batch size from sample indices. If the dataset size is not divisible by
353
+ the batch size and `drop_last` is `True`, the last incomplete batch is dropped. Else, it is returned."""
354
+ num_samples = len(samples_idx)
355
+ if drop_last:
356
+ samples_to_remove = num_samples % batch_size
357
+ if samples_to_remove != 0:
358
+ samples_idx = samples_idx[:-samples_to_remove]
359
+ sections_split = num_samples // batch_size
360
+ samples_idx = samples_idx.reshape((sections_split, batch_size))
361
+ else:
362
+ sections_split = math.ceil(num_samples / batch_size)
363
+ samples_idx = np.array_split(samples_idx, sections_split)
364
+ return samples_idx
365
+
366
+
367
+ def write_train_metric(summary_writer, train_metrics, train_time, step):
368
+ summary_writer.scalar("train_time", train_time, step)
369
+
370
+ train_metrics = get_metrics(train_metrics)
371
+ for key, vals in train_metrics.items():
372
+ tag = f"train_{key}"
373
+ for i, val in enumerate(vals):
374
+ summary_writer.scalar(tag, val, step - len(vals) + i + 1)
375
+
376
+
377
+ def write_eval_metric(summary_writer, eval_metrics, step):
378
+ for metric_name, value in eval_metrics.items():
379
+ summary_writer.scalar(f"eval_{metric_name}", value, step)
380
+
381
+ def mb_item(x):
382
+ return x.item() if hasattr(x, "item") else x
383
+
384
+ def save_model_checkpoint(
385
+ model,
386
+ save_dir,
387
+ state,
388
+ logger,
389
+ organization,
390
+ with_opt: bool = False,
391
+ push_to_hub: bool = False,
392
+ overwrite=False,
393
+ **kwargs,
394
+ ):
395
+ state = jax_utils.unreplicate(state)
396
+ logger.info(f"Saving Checkpoint in {save_dir}")
397
+ ckpt_save_dir = f"{save_dir}/ckpt-{mb_item(state.step)-1}"
398
+ if os.path.exists(ckpt_save_dir) and not overwrite:
399
+ logger.info("checkpoint exists, skipping overwrite")
400
+ else:
401
+ model.save_pretrained(
402
+ ckpt_save_dir, params=state.params, push_to_hub=False, **kwargs
403
+ )
404
+ if with_opt:
405
+ with open(os.path.join(ckpt_save_dir, "opt_state.msgpack"), "wb") as f:
406
+ f.write(to_bytes(state.opt_state))
407
+ with open(os.path.join(ckpt_save_dir, "training_state.json"), "w") as f:
408
+ json.dump({"step": state.step.item()}, f)
409
+
410
+ logger.info("checkpoint saved")
411
+
412
+ if push_to_hub:
413
+ repo_name = Path(save_dir).name
414
+ repo_url = PushToHubMixin._get_repo_url_from_name(
415
+ repo_name, organization=organization, private=False, use_auth_token=True
416
+ )
417
+ repo = PushToHubMixin._create_or_get_repo(
418
+ save_dir,
419
+ repo_url=repo_url,
420
+ organization=organization,
421
+ use_auth_token=True,
422
+ )
423
+ commit_message = f"Saving weights and logs at step {mb_item(state.step)-1}"
424
+ url = PushToHubMixin._push_to_hub(repo=repo, commit_message=commit_message)
425
+ logger.info(f"Model pushed to the hub in this commit: {url}")
426
+
427
+ def restore_model_checkpoint(save_dir, state, logger):
428
+ logger.info(f"Restoring checkpoint from {save_dir}.")
429
+ with open(os.path.join(save_dir, "flax_model.msgpack"), "rb") as f:
430
+ params = from_bytes(state.params, f.read())
431
+
432
+ with open(os.path.join(save_dir, "opt_state.msgpack"), "rb") as f:
433
+ opt_state = from_bytes(state.opt_state, f.read())
434
+
435
+ with open(os.path.join(save_dir, "training_state.json"), "r") as f:
436
+ training_state = json.load(f)
437
+ step = training_state["step"]
438
+
439
+ logger.info("checkpoint restored")
440
+ # return state.replace(step=step, params=params, opt_state=opt_state), step
441
+ return params, opt_state, step
442
+
443
+ def rotate_checkpoints(ckpt_dir: str, save_total_limit: int, logger):
444
+ "Removes older checkpoints so that `save_total_limit` checkpoints are kept"
445
+ # TODO: what to remove is decided using step number only, we might want to improve that
446
+ ckpts = [str(x) for x in Path(ckpt_dir).glob("ckpt-*")]
447
+ # sort checkpoints by step
448
+ ckpts_sorted = sorted(ckpts, key=lambda x: int(x.split("-")[-1]))
449
+ ckpts_to_delete = ckpts_sorted[:-save_total_limit]
450
+ for ckpt in ckpts_to_delete:
451
+ logger.info(
452
+ f"Deleting older checkpoint [{ckpt}] due to save_total_limit ({save_total_limit})"
453
+ )
454
+ shutil.rmtree(ckpt)
455
+
456
+
457
+ def main():
458
+ # See all possible arguments in src/transformers/training_args.py
459
+ # or by passing the --help flag to this script.
460
+ # We now keep distinct sets of args, for a cleaner separation of concerns.
461
+
462
+ parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
463
+ if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
464
+ # If we pass only one argument to the script and it's the path to a json file,
465
+ # let's parse it to get our arguments.
466
+ model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
467
+ else:
468
+ model_args, data_args, training_args = parser.parse_args_into_dataclasses()
469
+
470
+ # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
471
+ # information sent is the one passed as arguments along with your Python/PyTorch versions.
472
+ send_example_telemetry("run_mlm", model_args, data_args, framework="flax")
473
+
474
+ if (
475
+ os.path.exists(training_args.output_dir)
476
+ and os.listdir(training_args.output_dir)
477
+ and training_args.do_train
478
+ and not training_args.overwrite_output_dir
479
+ ):
480
+ raise ValueError(
481
+ f"Output directory ({training_args.output_dir}) already exists and is not empty."
482
+ "Use --overwrite_output_dir to overcome."
483
+ )
484
+
485
+ # Setup logging
486
+ logging.basicConfig(
487
+ format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
488
+ level=logging.INFO,
489
+ datefmt="[%X]",
490
+ )
491
+
492
+ # Log on each process the small summary:
493
+ logger = logging.getLogger(__name__)
494
+
495
+ # Set the verbosity to info of the Transformers logger (on main process only):
496
+ logger.info(f"Training/evaluation parameters {training_args}")
497
+
498
+ # Set seed before initializing model.
499
+ set_seed(training_args.seed)
500
+
501
+ # Handle the repository creation
502
+ if training_args.push_to_hub:
503
+ if training_args.hub_model_id is None:
504
+ repo_name = get_full_repo_name(
505
+ Path(training_args.output_dir).absolute().name, token=training_args.hub_token
506
+ )
507
+ else:
508
+ repo_name = training_args.hub_model_id
509
+ repo = Repository(training_args.output_dir, clone_from=repo_name)
510
+
511
+ # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
512
+ # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
513
+ # (the dataset will be downloaded automatically from the datasets Hub).
514
+ #
515
+ # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
516
+ # 'text' is found. You can easily tweak this behavior (see below).
517
+ #
518
+ # In distributed training, the load_dataset function guarantees that only one local process can concurrently
519
+ # download the dataset.
520
+ if data_args.dataset_name is not None:
521
+ # Downloading and loading a dataset from the hub.
522
+ datasets = load_dataset(
523
+ data_args.dataset_name,
524
+ data_args.dataset_config_name,
525
+ cache_dir=model_args.cache_dir,
526
+ use_auth_token=True if model_args.use_auth_token else None,
527
+ )
528
+
529
+ if "validation" not in datasets.keys():
530
+ print('use validated percen')
531
+ datasets["validation"] = load_dataset(
532
+ data_args.dataset_name,
533
+ data_args.dataset_config_name,
534
+ split=f"train[:{data_args.validation_split_percentage}%]",
535
+ cache_dir=model_args.cache_dir,
536
+ use_auth_token=True if model_args.use_auth_token else None,
537
+ )
538
+ datasets["train"] = load_dataset(
539
+ data_args.dataset_name,
540
+ data_args.dataset_config_name,
541
+ split=f"train[{data_args.validation_split_percentage}%:]",
542
+ cache_dir=model_args.cache_dir,
543
+ use_auth_token=True if model_args.use_auth_token else None,
544
+ )
545
+ else:
546
+ data_files = {}
547
+ if data_args.train_file is not None:
548
+ data_files["train"] = data_args.train_file
549
+ if data_args.validation_file is not None:
550
+ data_files["validation"] = data_args.validation_file
551
+ extension = data_args.train_file.split(".")[-1]
552
+ if extension == "txt":
553
+ extension = "text"
554
+ datasets = load_dataset(
555
+ extension,
556
+ data_files=data_files,
557
+ cache_dir=model_args.cache_dir,
558
+ use_auth_token=True if model_args.use_auth_token else None,
559
+ )
560
+
561
+ if "validation" not in datasets.keys():
562
+ datasets["validation"] = load_dataset(
563
+ extension,
564
+ data_files=data_files,
565
+ split=f"train[:{data_args.validation_split_percentage}%]",
566
+ cache_dir=model_args.cache_dir,
567
+ use_auth_token=True if model_args.use_auth_token else None,
568
+ )
569
+ datasets["train"] = load_dataset(
570
+ extension,
571
+ data_files=data_files,
572
+ split=f"train[{data_args.validation_split_percentage}%:]",
573
+ cache_dir=model_args.cache_dir,
574
+ use_auth_token=True if model_args.use_auth_token else None,
575
+ )
576
+ # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
577
+ # https://huggingface.co/docs/datasets/loading_datasets.html.
578
+
579
+ # Load pretrained model and tokenizer
580
+
581
+ # Distributed training:
582
+ # The .from_pretrained methods guarantee that only one local process can concurrently
583
+ # download model & vocab.
584
+ print("total len train",len(datasets["train"]))
585
+ print("total len valida",len(datasets["validation"]))
586
+ if model_args.config_name:
587
+ config = AutoConfig.from_pretrained(
588
+ model_args.config_name,
589
+ cache_dir=model_args.cache_dir,
590
+ use_auth_token=True if model_args.use_auth_token else None,
591
+ )
592
+ elif model_args.model_name_or_path:
593
+ config = AutoConfig.from_pretrained(
594
+ model_args.model_name_or_path,
595
+ cache_dir=model_args.cache_dir,
596
+ use_auth_token=True if model_args.use_auth_token else None,
597
+ )
598
+ else:
599
+ config = CONFIG_MAPPING[model_args.model_type]()
600
+ logger.warning("You are instantiating a new config instance from scratch.")
601
+
602
+ if model_args.tokenizer_name:
603
+ tokenizer = AutoTokenizer.from_pretrained(
604
+ model_args.tokenizer_name,
605
+ cache_dir=model_args.cache_dir,
606
+ use_fast=model_args.use_fast_tokenizer,
607
+ use_auth_token=True if model_args.use_auth_token else None,
608
+ )
609
+ elif model_args.model_name_or_path:
610
+ tokenizer = AutoTokenizer.from_pretrained(
611
+ model_args.model_name_or_path,
612
+ cache_dir=model_args.cache_dir,
613
+ use_fast=model_args.use_fast_tokenizer,
614
+ use_auth_token=True if model_args.use_auth_token else None,
615
+ )
616
+ else:
617
+ raise ValueError(
618
+ "You are instantiating a new tokenizer from scratch. This is not supported by this script."
619
+ "You can do it from another script, save it, and load it from here, using --tokenizer_name."
620
+ )
621
+
622
+ # Preprocessing the datasets.
623
+ # First we tokenize all the texts.
624
+ if training_args.do_train:
625
+ column_names = datasets["train"].column_names
626
+ else:
627
+ column_names = datasets["validation"].column_names
628
+ text_column_name = "text" if "text" in column_names else column_names[0]
629
+
630
+ max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)
631
+
632
+ if data_args.line_by_line:
633
+ # When using line_by_line, we just tokenize each nonempty line.
634
+ padding = "max_length" if data_args.pad_to_max_length else False
635
+
636
+ def tokenize_function(examples):
637
+ # Remove empty lines
638
+ examples = [line for line in examples if len(line) > 0 and not line.isspace()]
639
+ return tokenizer(
640
+ examples,
641
+ return_special_tokens_mask=True,
642
+ padding=padding,
643
+ truncation=True,
644
+ max_length=max_seq_length,
645
+ )
646
+
647
+ tokenized_datasets = datasets.map(
648
+ tokenize_function,
649
+ input_columns=[text_column_name],
650
+ batched=True,
651
+ num_proc=data_args.preprocessing_num_workers,
652
+ remove_columns=column_names,
653
+ load_from_cache_file=not data_args.overwrite_cache,
654
+ )
655
+
656
+ else:
657
+ # Otherwise, we tokenize every text, then concatenate them together before splitting them in smaller parts.
658
+ # We use `return_special_tokens_mask=True` because DataCollatorForLanguageModeling (see below) is more
659
+ # efficient when it receives the `special_tokens_mask`.
660
+ def tokenize_function(examples):
661
+ return tokenizer(examples[text_column_name], return_special_tokens_mask=True)
662
+
663
+ tokenized_datasets = datasets.map(
664
+ tokenize_function,
665
+ batched=True,
666
+ num_proc=data_args.preprocessing_num_workers,
667
+ remove_columns=column_names,
668
+ load_from_cache_file=not data_args.overwrite_cache,
669
+ )
670
+
671
+ # Main data processing function that will concatenate all texts from our dataset and generate chunks of
672
+ # max_seq_length.
673
+ def group_texts(examples):
674
+ # Concatenate all texts.
675
+ concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
676
+ total_length = len(concatenated_examples[list(examples.keys())[0]])
677
+ # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
678
+ # customize this part to your needs.
679
+ if total_length >= max_seq_length:
680
+ total_length = (total_length // max_seq_length) * max_seq_length
681
+ # Split by chunks of max_len.
682
+ result = {
683
+ k: [t[i : i + max_seq_length] for i in range(0, total_length, max_seq_length)]
684
+ for k, t in concatenated_examples.items()
685
+ }
686
+ return result
687
+
688
+ # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a
689
+ # remainder for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value
690
+ # might be slower to preprocess.
691
+ #
692
+ # To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
693
+ # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map
694
+ tokenized_datasets = tokenized_datasets.map(
695
+ group_texts,
696
+ batched=True,
697
+ num_proc=data_args.preprocessing_num_workers,
698
+ load_from_cache_file=not data_args.overwrite_cache,
699
+ )
700
+
701
+ # Enable tensorboard only on the master node
702
+ has_tensorboard = is_tensorboard_available()
703
+ if has_tensorboard and jax.process_index() == 0:
704
+ try:
705
+ from flax.metrics.tensorboard import SummaryWriter
706
+ import wandb
707
+ wandb.init(
708
+ entity='munggok',
709
+ project='roberta-indo-base',
710
+ sync_tensorboard=True,
711
+ )
712
+ wandb.config.update(training_args)
713
+ wandb.config.update(model_args)
714
+ wandb.config.update(data_args)
715
+
716
+ summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir))
717
+ except ImportError as ie:
718
+ has_tensorboard = False
719
+ logger.warning(
720
+ f"Unable to display metrics through TensorBoard because some package are not installed: {ie}"
721
+ )
722
+ else:
723
+ logger.warning(
724
+ "Unable to display metrics through TensorBoard because the package is not installed: "
725
+ "Please run pip install tensorboard to enable."
726
+ )
727
+
728
+ # Data collator
729
+ # This one will take care of randomly masking the tokens.
730
+ data_collator = FlaxDataCollatorForLanguageModeling(tokenizer=tokenizer, mlm_probability=data_args.mlm_probability)
731
+
732
+ # Initialize our training
733
+ rng = jax.random.PRNGKey(training_args.seed)
734
+ dropout_rngs = jax.random.split(rng, jax.local_device_count())
735
+
736
+ if model_args.model_name_or_path:
737
+ model = FlaxAutoModelForMaskedLM.from_pretrained(
738
+ model_args.model_name_or_path,
739
+ config=config,
740
+ seed=training_args.seed,
741
+ dtype=getattr(jnp, model_args.dtype),
742
+ use_auth_token=True if model_args.use_auth_token else None,
743
+ )
744
+ else:
745
+ model = FlaxAutoModelForMaskedLM.from_config(
746
+ config,
747
+ seed=training_args.seed,
748
+ dtype=getattr(jnp, model_args.dtype),
749
+ )
750
+
751
+ if training_args.gradient_checkpointing:
752
+ model.enable_gradient_checkpointing()
753
+
754
+ # Store some constant
755
+ num_epochs = int(training_args.num_train_epochs)
756
+ train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count()
757
+ per_device_eval_batch_size = int(training_args.per_device_eval_batch_size)
758
+ eval_batch_size = per_device_eval_batch_size * jax.device_count()
759
+
760
+ num_train_steps = len(tokenized_datasets["train"]) // train_batch_size * num_epochs
761
+
762
+ # Create learning rate schedule
763
+ warmup_fn = optax.linear_schedule(
764
+ init_value=0.0, end_value=training_args.learning_rate, transition_steps=training_args.warmup_steps
765
+ )
766
+ decay_fn = optax.linear_schedule(
767
+ init_value=training_args.learning_rate,
768
+ end_value=0,
769
+ transition_steps=num_train_steps - training_args.warmup_steps,
770
+ )
771
+ linear_decay_lr_schedule_fn = optax.join_schedules(
772
+ schedules=[warmup_fn, decay_fn], boundaries=[training_args.warmup_steps]
773
+ )
774
+
775
+ # We use Optax's "masking" functionality to not apply weight decay
776
+ # to bias and LayerNorm scale parameters. decay_mask_fn returns a
777
+ # mask boolean with the same structure as the parameters.
778
+ # The mask is True for parameters that should be decayed.
779
+ def decay_mask_fn(params):
780
+ flat_params = traverse_util.flatten_dict(params)
781
+ # find out all LayerNorm parameters
782
+ layer_norm_candidates = ["layernorm", "layer_norm", "ln"]
783
+ layer_norm_named_params = set(
784
+ [
785
+ layer[-2:]
786
+ for layer_norm_name in layer_norm_candidates
787
+ for layer in flat_params.keys()
788
+ if layer_norm_name in "".join(layer).lower()
789
+ ]
790
+ )
791
+ flat_mask = {path: (path[-1] != "bias" and path[-2:] not in layer_norm_named_params) for path in flat_params}
792
+ return traverse_util.unflatten_dict(flat_mask)
793
+
794
+ # create adam optimizer
795
+ if training_args.adafactor:
796
+ # We use the default parameters here to initialize adafactor,
797
+ # For more details about the parameters please check https://github.com/deepmind/optax/blob/ed02befef9bf81cbbf236be3d2b0e032e9ed4a40/optax/_src/alias.py#L74
798
+ optimizer = optax.adafactor(
799
+ learning_rate=linear_decay_lr_schedule_fn,
800
+ )
801
+ else:
802
+ optimizer = optax.adamw(
803
+ learning_rate=linear_decay_lr_schedule_fn,
804
+ b1=training_args.adam_beta1,
805
+ b2=training_args.adam_beta2,
806
+ eps=training_args.adam_epsilon,
807
+ weight_decay=training_args.weight_decay,
808
+ mask=decay_mask_fn,
809
+ )
810
+
811
+ # Setup train state
812
+ state = train_state.TrainState.create(apply_fn=model.__call__, params=model.params, tx=optimizer)
813
+
814
+ # Define gradient update step fn
815
+ def train_step(state, batch, dropout_rng):
816
+ dropout_rng, new_dropout_rng = jax.random.split(dropout_rng)
817
+
818
+ def loss_fn(params):
819
+ labels = batch.pop("labels")
820
+
821
+ logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0]
822
+
823
+ # compute loss, ignore padded input tokens
824
+ label_mask = jnp.where(labels > 0, 1.0, 0.0)
825
+ loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])) * label_mask
826
+
827
+ # take average
828
+ loss = loss.sum() / label_mask.sum()
829
+
830
+ return loss
831
+
832
+ grad_fn = jax.value_and_grad(loss_fn)
833
+ loss, grad = grad_fn(state.params)
834
+ grad = jax.lax.pmean(grad, "batch")
835
+ new_state = state.apply_gradients(grads=grad)
836
+
837
+ metrics = jax.lax.pmean(
838
+ {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)}, axis_name="batch"
839
+ )
840
+
841
+ return new_state, metrics, new_dropout_rng
842
+
843
+ # Create parallel version of the train step
844
+ p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,))
845
+
846
+ # Define eval fn
847
+ def eval_step(params, batch):
848
+ labels = batch.pop("labels")
849
+
850
+ logits = model(**batch, params=params, train=False)[0]
851
+
852
+ # compute loss, ignore padded input tokens
853
+ label_mask = jnp.where(labels > 0, 1.0, 0.0)
854
+ loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])) * label_mask
855
+
856
+ # compute accuracy
857
+ accuracy = jnp.equal(jnp.argmax(logits, axis=-1), labels) * label_mask
858
+
859
+ # summarize metrics
860
+ metrics = {"loss": loss.sum(), "accuracy": accuracy.sum(), "normalizer": label_mask.sum()}
861
+ metrics = jax.lax.psum(metrics, axis_name="batch")
862
+
863
+ return metrics
864
+
865
+ p_eval_step = jax.pmap(eval_step, "batch", donate_argnums=(0,))
866
+
867
+ # Replicate the train state on each device
868
+ state = jax_utils.replicate(state)
869
+
870
+ train_time = 0
871
+ epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0)
872
+ for epoch in epochs:
873
+ # ======================== Training ================================
874
+ train_start = time.time()
875
+ train_metrics = []
876
+
877
+ # Create sampling rng
878
+ rng, input_rng = jax.random.split(rng)
879
+
880
+ # Generate an epoch by shuffling sampling indices from the train dataset
881
+ num_train_samples = len(tokenized_datasets["train"])
882
+ # Avoid using jax.numpy here in case of TPU training
883
+ train_samples_idx = np.random.permutation(np.arange(num_train_samples))
884
+ train_batch_idx = generate_batch_splits(train_samples_idx, train_batch_size)
885
+
886
+ # Gather the indexes for creating the batch and do a training step
887
+ for step, batch_idx in enumerate(tqdm(train_batch_idx, desc="Training...", position=1)):
888
+ samples = [tokenized_datasets["train"][int(idx)] for idx in batch_idx]
889
+ model_inputs = data_collator(samples, pad_to_multiple_of=16)
890
+
891
+ # Model forward
892
+ model_inputs = shard(model_inputs.data)
893
+ state, train_metric, dropout_rngs = p_train_step(state, model_inputs, dropout_rngs)
894
+ train_metrics.append(train_metric)
895
+
896
+ cur_step = epoch * (num_train_samples // train_batch_size) + step
897
+
898
+ if cur_step % training_args.logging_steps == 0 and cur_step > 0:
899
+ # Save metrics
900
+ train_metric = jax_utils.unreplicate(train_metric)
901
+ train_time += time.time() - train_start
902
+ if has_tensorboard and jax.process_index() == 0:
903
+ write_train_metric(summary_writer, train_metrics, train_time, cur_step)
904
+
905
+ epochs.write(
906
+ f"Step... ({cur_step} | Loss: {train_metric['loss']}, Learning Rate:"
907
+ f" {train_metric['learning_rate']})"
908
+ )
909
+
910
+ train_metrics = []
911
+
912
+ if cur_step % training_args.eval_steps == 0 and cur_step > 0:
913
+ # ======================== Evaluating ==============================
914
+ num_eval_samples = len(tokenized_datasets["validation"])
915
+ # Avoid using jax.numpy here in case of TPU training
916
+ eval_samples_idx = np.arange(num_eval_samples)
917
+ eval_batch_idx = generate_batch_splits(eval_samples_idx, eval_batch_size, drop_last=False)
918
+
919
+ eval_metrics = []
920
+ for i, batch_idx in enumerate(tqdm(eval_batch_idx, desc="Evaluating ...", position=2)):
921
+ samples = [tokenized_datasets["validation"][int(idx)] for idx in batch_idx]
922
+ model_inputs = data_collator(samples, pad_to_multiple_of=16)
923
+
924
+ # Model forward
925
+ metrics = pad_shard_unpad(p_eval_step, static_return=True)(
926
+ state.params, model_inputs.data, min_device_batch=per_device_eval_batch_size
927
+ )
928
+ eval_metrics.append(metrics)
929
+
930
+ # normalize eval metrics
931
+ eval_metrics = get_metrics(eval_metrics)
932
+ eval_metrics = jax.tree_map(jnp.sum, eval_metrics)
933
+ eval_normalizer = eval_metrics.pop("normalizer")
934
+ eval_metrics = jax.tree_map(lambda x: x / eval_normalizer, eval_metrics)
935
+
936
+ # Update progress bar
937
+ epochs.desc = f"Step... ({cur_step} | Loss: {eval_metrics['loss']}, Acc: {eval_metrics['accuracy']})"
938
+
939
+ # Save metrics
940
+ if has_tensorboard and jax.process_index() == 0:
941
+ write_eval_metric(summary_writer, eval_metrics, cur_step)
942
+
943
+ if cur_step % training_args.save_steps == 0 and cur_step > 0:
944
+ # save checkpoint after each epoch and push checkpoint to the hub
945
+ if jax.process_index() == 0:
946
+ save_model_checkpoint(
947
+ model,
948
+ training_args.output_dir,
949
+ state,
950
+ logger,
951
+ False,
952
+ with_opt=True,
953
+ push_to_hub=training_args.push_to_hub,
954
+ overwrite=True,
955
+ )
956
+ if training_args.save_total_limit is not None:
957
+ rotate_checkpoints(
958
+ training_args.output_dir,
959
+ training_args.save_total_limit,
960
+ logger,
961
+ )
962
+ if training_args.push_to_hub:
963
+ repo.push_to_hub(commit_message=f"Saving weights and logs of step {cur_step}", blocking=False)
964
+
965
+ # Eval after training
966
+ if training_args.do_eval:
967
+ num_eval_samples = len(tokenized_datasets["validation"])
968
+ # Avoid using jax.numpy here in case of TPU training
969
+ eval_samples_idx = np.arange(num_eval_samples)
970
+ eval_batch_idx = generate_batch_splits(eval_samples_idx, eval_batch_size, drop_last=False)
971
+
972
+ eval_metrics = []
973
+ for _, batch_idx in enumerate(tqdm(eval_batch_idx, desc="Evaluating ...", position=2)):
974
+ samples = [tokenized_datasets["validation"][int(idx)] for idx in batch_idx]
975
+ model_inputs = data_collator(samples, pad_to_multiple_of=16)
976
+
977
+ # Model forward
978
+ metrics = pad_shard_unpad(p_eval_step, static_return=True)(
979
+ state.params, model_inputs.data, min_device_batch=per_device_eval_batch_size
980
+ )
981
+ eval_metrics.append(metrics)
982
+
983
+ # normalize eval metrics
984
+ eval_metrics = get_metrics(eval_metrics)
985
+ eval_metrics = jax.tree_map(lambda metric: jnp.sum(metric).item(), eval_metrics)
986
+ eval_normalizer = eval_metrics.pop("normalizer")
987
+ eval_metrics = jax.tree_map(lambda x: x / eval_normalizer, eval_metrics)
988
+
989
+ try:
990
+ perplexity = math.exp(eval_metrics["loss"])
991
+ except OverflowError:
992
+ perplexity = float("inf")
993
+ eval_metrics["perplexity"] = perplexity
994
+
995
+ if jax.process_index() == 0:
996
+ eval_metrics = {f"eval_{metric_name}": value for metric_name, value in eval_metrics.items()}
997
+ path = os.path.join(training_args.output_dir, "eval_results.json")
998
+ with open(path, "w") as f:
999
+ json.dump(eval_metrics, f, indent=4, sort_keys=True)
1000
+
1001
+
1002
+ if __name__ == "__main__":
1003
+ main()
run_mlm_flax_stream.py ADDED
@@ -0,0 +1,825 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding=utf-8
3
+ # Copyright 2021 The HuggingFace Team All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """
17
+ Fine-tuning the library models for masked language modeling (BERT, ALBERT, RoBERTa...) with whole word masking on a
18
+ text file or a dataset.
19
+
20
+ Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
21
+ https://huggingface.co/models?filter=masked-lm
22
+ """
23
+ import logging
24
+ import json
25
+ import os
26
+ import shutil
27
+ import sys
28
+ import tempfile
29
+ import time
30
+ from collections import defaultdict
31
+ from dataclasses import dataclass, field
32
+
33
+ # You can also adapt this script on your own masked language modeling task. Pointers for this are left as comments.
34
+ import joblib
35
+ from pathlib import Path
36
+ from typing import Dict, List, Optional, Tuple
37
+
38
+ import datasets
39
+ import numpy as np
40
+ from datasets import load_dataset
41
+ from tqdm import tqdm
42
+
43
+ import flax
44
+ import jax
45
+ import jax.numpy as jnp
46
+ import optax
47
+ from flax import jax_utils, traverse_util
48
+ from flax.serialization import from_bytes, to_bytes
49
+ from flax.training import train_state
50
+ from flax.training.common_utils import get_metrics, onehot, shard
51
+ from transformers import (
52
+ CONFIG_MAPPING,
53
+ FLAX_MODEL_FOR_MASKED_LM_MAPPING,
54
+ AutoConfig,
55
+ AutoTokenizer,
56
+ FlaxAutoModelForMaskedLM,
57
+ HfArgumentParser,
58
+ PreTrainedTokenizerBase,
59
+ TensorType,
60
+ TrainingArguments,
61
+ is_tensorboard_available,
62
+ set_seed,
63
+ FlaxRobertaForMaskedLM,
64
+ RobertaForMaskedLM,
65
+ )
66
+
67
+
68
+ if datasets.__version__ <= "1.8.0":
69
+ raise ValueError("Make sure to upgrade `datasets` to a version >= 1.9.0 to use dataset streaming")
70
+
71
+
72
+ MODEL_CONFIG_CLASSES = list(FLAX_MODEL_FOR_MASKED_LM_MAPPING.keys())
73
+ MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
74
+
75
+
76
+ @dataclass
77
+ class ModelArguments:
78
+ """
79
+ Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
80
+ """
81
+
82
+ model_name_or_path: Optional[str] = field(
83
+ default=None,
84
+ metadata={
85
+ "help": "The model checkpoint for weights initialization."
86
+ "Don't set if you want to train a model from scratch."
87
+ },
88
+ )
89
+ model_type: Optional[str] = field(
90
+ default=None,
91
+ metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
92
+ )
93
+ config_name: Optional[str] = field(
94
+ default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
95
+ )
96
+ tokenizer_name: Optional[str] = field(
97
+ default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
98
+ )
99
+ cache_dir: Optional[str] = field(
100
+ default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
101
+ )
102
+ use_fast_tokenizer: bool = field(
103
+ default=True,
104
+ metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
105
+ )
106
+ dtype: Optional[str] = field(
107
+ default="float32",
108
+ metadata={
109
+ "help": "Floating-point format in which the model weights should be initialized and trained. Choose one of `[float32, float16, bfloat16]`."
110
+ },
111
+ )
112
+
113
+ @dataclass
114
+ class DataTrainingArguments:
115
+ """
116
+ Arguments pertaining to what data we are going to input our model for training and eval.
117
+ """
118
+
119
+ dataset_name: Optional[str] = field(
120
+ default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
121
+ )
122
+ dataset_config_name: Optional[str] = field(
123
+ default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
124
+ )
125
+ train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
126
+ validation_file: Optional[str] = field(
127
+ default=None,
128
+ metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
129
+ )
130
+ train_ref_file: Optional[str] = field(
131
+ default=None,
132
+ metadata={"help": "An optional input train ref data file for whole word masking in Chinese."},
133
+ )
134
+ validation_ref_file: Optional[str] = field(
135
+ default=None,
136
+ metadata={"help": "An optional input validation ref data file for whole word masking in Chinese."},
137
+ )
138
+ overwrite_cache: bool = field(
139
+ default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
140
+ )
141
+ validation_split_percentage: Optional[int] = field(
142
+ default=5,
143
+ metadata={
144
+ "help": "The percentage of the train set used as validation set in case there's no validation split"
145
+ },
146
+ )
147
+ max_seq_length: Optional[int] = field(
148
+ default=None,
149
+ metadata={
150
+ "help": "The maximum total input sequence length after tokenization. Sequences longer "
151
+ "than this will be truncated. Default to the max input length of the model."
152
+ },
153
+ )
154
+ preprocessing_num_workers: Optional[int] = field(
155
+ default=None,
156
+ metadata={"help": "The number of processes to use for the preprocessing."},
157
+ )
158
+ mlm_probability: float = field(
159
+ default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}
160
+ )
161
+ pad_to_max_length: bool = field(
162
+ default=False,
163
+ metadata={
164
+ "help": "Whether to pad all samples to `max_seq_length`. "
165
+ "If False, will pad the samples dynamically when batching to the maximum length in the batch."
166
+ },
167
+ )
168
+ line_by_line: bool = field(
169
+ default=False,
170
+ metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."},
171
+ )
172
+ text_column_name: str = field(
173
+ default="text", metadata={"help": "The name of the column to retrieve the training text."}
174
+ )
175
+ shuffle_buffer_size: int = field(
176
+ default=10000, metadata={"help": "The number of examples to pre-load for shuffling."}
177
+ )
178
+ num_train_steps: int = field(default=50000, metadata={"help": "The number of training steps."})
179
+ num_eval_samples: int = field(default=50000, metadata={"help": "The number of samples to be used for evaluation"})
180
+
181
+ def __post_init__(self):
182
+ if self.dataset_name is None and self.train_file is None and self.validation_file is None:
183
+ raise ValueError("Need either a dataset name or a training/validation file.")
184
+ else:
185
+ if self.train_file is not None:
186
+ extension = self.train_file.split(".")[-1]
187
+ assert extension in ["csv", "json", "jsonl", "txt", "gz"], "`train_file` should be a csv, a json (lines) or a txt file."
188
+ if self.validation_file is not None:
189
+ extension = self.validation_file.split(".")[-1]
190
+ assert extension in ["csv", "json", "jsonl", "txt", "gz"], "`validation_file` should be a csv, a json (lines) or a txt file."
191
+
192
+
193
+ @flax.struct.dataclass
194
+ class FlaxDataCollatorForLanguageModeling:
195
+ """
196
+ Data collator used for language modeling. Inputs are dynamically padded to the maximum length of a batch if they
197
+ are not all of the same length.
198
+
199
+ Args:
200
+ tokenizer (:class:`~transformers.PreTrainedTokenizer` or :class:`~transformers.PreTrainedTokenizerFast`):
201
+ The tokenizer used for encoding the data.
202
+ mlm_probability (:obj:`float`, `optional`, defaults to 0.15):
203
+ The probability with which to (randomly) mask tokens in the input.
204
+
205
+ .. note::
206
+
207
+ For best performance, this data collator should be used with a dataset having items that are dictionaries or
208
+ BatchEncoding, with the :obj:`"special_tokens_mask"` key, as returned by a
209
+ :class:`~transformers.PreTrainedTokenizer` or a :class:`~transformers.PreTrainedTokenizerFast` with the
210
+ argument :obj:`return_special_tokens_mask=True`.
211
+ """
212
+
213
+ tokenizer: PreTrainedTokenizerBase
214
+ mlm_probability: float = 0.15
215
+
216
+ def __post_init__(self):
217
+ if self.tokenizer.mask_token is None:
218
+ raise ValueError(
219
+ "This tokenizer does not have a mask token which is necessary for masked language modeling. "
220
+ "You should pass `mlm=False` to train on causal language modeling instead."
221
+ )
222
+
223
+ def __call__(self, examples: List[Dict[str, np.ndarray]], pad_to_multiple_of: int) -> Dict[str, np.ndarray]:
224
+ # Handle dict or lists with proper padding and conversion to tensor.
225
+ batch = self.tokenizer.pad(examples, pad_to_multiple_of=pad_to_multiple_of, return_tensors=TensorType.NUMPY)
226
+
227
+ # If special token mask has been preprocessed, pop it from the dict.
228
+ special_tokens_mask = batch.pop("special_tokens_mask", None)
229
+
230
+ batch["input_ids"], batch["labels"] = self.mask_tokens(
231
+ batch["input_ids"], special_tokens_mask=special_tokens_mask
232
+ )
233
+ return batch
234
+
235
+ def mask_tokens(
236
+ self, inputs: np.ndarray, special_tokens_mask: Optional[np.ndarray]
237
+ ) -> Tuple[jnp.ndarray, jnp.ndarray]:
238
+ """
239
+ Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original.
240
+ """
241
+ labels = inputs.copy()
242
+ # We sample a few tokens in each sequence for MLM training (with probability `self.mlm_probability`)
243
+ probability_matrix = np.full(labels.shape, self.mlm_probability)
244
+ special_tokens_mask = special_tokens_mask.astype("bool")
245
+
246
+ probability_matrix[special_tokens_mask] = 0.0
247
+ masked_indices = np.random.binomial(1, probability_matrix).astype("bool")
248
+ labels[~masked_indices] = -100 # We only compute loss on masked tokens
249
+
250
+ # 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
251
+ indices_replaced = np.random.binomial(1, np.full(labels.shape, 0.8)).astype("bool") & masked_indices
252
+ inputs[indices_replaced] = self.tokenizer.convert_tokens_to_ids(self.tokenizer.mask_token)
253
+
254
+ # 10% of the time, we replace masked input tokens with random word
255
+ indices_random = np.random.binomial(1, np.full(labels.shape, 0.5)).astype("bool")
256
+ indices_random &= masked_indices & ~indices_replaced
257
+
258
+ random_words = np.random.randint(self.tokenizer.vocab_size, size=labels.shape, dtype="i4")
259
+ inputs[indices_random] = random_words[indices_random]
260
+
261
+ # The rest of the time (10% of the time) we keep the masked input tokens unchanged
262
+ return inputs, labels
263
+
264
+
265
+ @dataclass
266
+ class SamplingArguments:
267
+ """
268
+ Arguments pertaining to how to perform sampling of the dataset.
269
+ """
270
+
271
+ perplexity_model: Optional[str] = field(
272
+ default="./es.arpa.bin", metadata={"help": "Path to KenLM model to use to get perplexity values."}
273
+ )
274
+ sampling_method: Optional[str] = field(
275
+ default=None, metadata={"help": "Sample using a 'step' or 'gaussian' perplexity function per document, or 'random'."}
276
+ )
277
+ sampling_factor: Optional[float] = field(
278
+ default=None, metadata={"help": "Sampling factor. Integers for step function, decimals for gaussian."}
279
+ )
280
+ boundaries: Optional[str] = field(
281
+ default="536394.99320948,662247.50212365,919250.87225178", metadata={"help": "Quartile boundaries"}
282
+ )
283
+
284
+ def __post_init__(self):
285
+ self.boundaries = [float(q.strip()) for q in self.boundaries.split(",")]
286
+
287
+
288
+ def generate_batch_splits(samples_idx: jnp.ndarray, batch_size: int) -> jnp.ndarray:
289
+ num_samples = len(samples_idx)
290
+ samples_to_remove = num_samples % batch_size
291
+
292
+ if samples_to_remove != 0:
293
+ samples_idx = samples_idx[:-samples_to_remove]
294
+ sections_split = num_samples // batch_size
295
+ batch_idx = np.split(samples_idx, sections_split)
296
+ return batch_idx
297
+
298
+
299
+ def advance_iter_and_group_samples(train_iterator, num_samples, max_seq_length):
300
+ """
301
+ The training iterator is advanced so that after groupifying the samples,
302
+ `num_samples` of length `max_seq_length` are returned.
303
+ """
304
+ num_total_tokens = max_seq_length * num_samples
305
+ samples = defaultdict(list)
306
+
307
+ i = 0
308
+ while i < num_total_tokens:
309
+ tokenized_samples = next(train_iterator)
310
+ i += len(tokenized_samples["input_ids"])
311
+
312
+ # concatenate tokenized samples to list
313
+ samples = {k: samples[k] + tokenized_samples[k] for k in tokenized_samples.keys()}
314
+
315
+ # Concatenated tokens are split to lists of length `max_seq_length`.
316
+ # Note that remainedr of % max_seq_length are thrown away.
317
+ def group_texts(examples):
318
+ result = {
319
+ k: [t[i : i + max_seq_length] for i in range(0, num_total_tokens, max_seq_length)]
320
+ for k, t in examples.items()
321
+ }
322
+ return result
323
+
324
+ grouped_samples = group_texts(samples)
325
+ return grouped_samples
326
+
327
+
328
+ def write_train_metric(summary_writer, train_metrics, train_time, step):
329
+ summary_writer.scalar("train_time", train_time, step)
330
+
331
+ train_metrics = get_metrics(train_metrics)
332
+ for key, vals in train_metrics.items():
333
+ tag = f"train_{key}"
334
+ for i, val in enumerate(vals):
335
+ summary_writer.scalar(tag, val, step - len(vals) + i + 1)
336
+
337
+
338
+ def write_eval_metric(summary_writer, eval_metrics, step):
339
+ for metric_name, value in eval_metrics.items():
340
+ summary_writer.scalar(f"eval_{metric_name}", value, step)
341
+
342
+
343
+ def save_checkpoint_files(state, data_collator, training_args, save_dir):
344
+ unreplicated_state = jax_utils.unreplicate(state)
345
+ with open(os.path.join(save_dir, "optimizer_state.msgpack"), "wb") as f:
346
+ f.write(to_bytes(unreplicated_state.opt_state))
347
+ joblib.dump(training_args, os.path.join(save_dir, "training_args.joblib"))
348
+ joblib.dump(data_collator, os.path.join(save_dir, "data_collator.joblib"))
349
+ with open(os.path.join(save_dir, "training_state.json"), "w") as f:
350
+ json.dump({"step": unreplicated_state.step.item()}, f)
351
+
352
+
353
+ def restore_checkpoint(save_dir, state):
354
+ logger.info(f"Restoring checkpoint from {save_dir}")
355
+ with open(os.path.join(save_dir, "flax_model.msgpack"), "rb") as f:
356
+ params = from_bytes(state.params, f.read())
357
+
358
+ with open(os.path.join(save_dir, "optimizer_state.msgpack"), "rb") as f:
359
+ opt_state = from_bytes(state.opt_state, f.read())
360
+
361
+ args = joblib.load(os.path.join(save_dir, "training_args.joblib"))
362
+ data_collator = joblib.load(os.path.join(save_dir, "data_collator.joblib"))
363
+
364
+ with open(os.path.join(save_dir, "training_state.json"), "r") as f:
365
+ training_state = json.load(f)
366
+ step = training_state["step"]
367
+
368
+ return params, opt_state, step, args, data_collator
369
+
370
+
371
+ def rotate_checkpoints(path, max_checkpoints=5):
372
+ paths = sorted(Path(path).iterdir(), key=os.path.getmtime)[::-1]
373
+ if len(paths) > max_checkpoints:
374
+ for path_to_delete in paths[max_checkpoints:]:
375
+ try:
376
+ shutil.rmtree(path_to_delete)
377
+ except OSError:
378
+ os.remove(path_to_delete)
379
+
380
+
381
+ def to_f32(t):
382
+ return jax.tree_map(lambda x: x.astype(jnp.float32) if x.dtype == jnp.bfloat16 else x, t)
383
+
384
+
385
+ def convert(output_dir, destination_dir="./"):
386
+ shutil.copyfile(Path(output_dir) / "flax_model.msgpack", Path(destination_dir) / "flax_model.msgpack")
387
+ shutil.copyfile(Path(output_dir) / "config.json", Path(destination_dir) / "config.json")
388
+ # Saving extra files from config.json and tokenizer.json files
389
+ tokenizer = AutoTokenizer.from_pretrained(destination_dir)
390
+ tokenizer.save_pretrained(destination_dir)
391
+
392
+ # Temporary saving bfloat16 Flax model into float32
393
+ tmp = tempfile.mkdtemp()
394
+ flax_model = FlaxRobertaForMaskedLM.from_pretrained(destination_dir)
395
+ flax_model.params = to_f32(flax_model.params)
396
+ flax_model.save_pretrained(tmp)
397
+ # Converting float32 Flax to PyTorch
398
+ model = RobertaForMaskedLM.from_pretrained(tmp, from_flax=True)
399
+ model.save_pretrained(destination_dir, save_config=False)
400
+
401
+
402
+ if __name__ == "__main__":
403
+ # See all possible arguments in src/transformers/training_args.py
404
+ # or by passing the --help flag to this script.
405
+ # We now keep distinct sets of args, for a cleaner separation of concerns.
406
+
407
+ parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments, SamplingArguments))
408
+ if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
409
+ # If we pass only one argument to the script and it's the path to a json file,
410
+ # let's parse it to get our arguments.
411
+ model_args, data_args, training_args, sampling_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
412
+ else:
413
+ model_args, data_args, training_args, sampling_args = parser.parse_args_into_dataclasses()
414
+
415
+ if (
416
+ os.path.exists(training_args.output_dir)
417
+ and os.listdir(training_args.output_dir)
418
+ and training_args.do_train
419
+ and not training_args.overwrite_output_dir
420
+ ):
421
+ raise ValueError(
422
+ f"Output directory ({training_args.output_dir}) already exists and is not empty."
423
+ "Use --overwrite_output_dir to overcome."
424
+ )
425
+
426
+ # Setup logging
427
+ logging.basicConfig(
428
+ format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
429
+ level="INFO",
430
+ datefmt="[%X]",
431
+ )
432
+
433
+ # Log on each process the small summary:
434
+ logger = logging.getLogger(__name__)
435
+ logger.warning(
436
+ f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
437
+ + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
438
+ )
439
+
440
+ # Set the verbosity to info of the Transformers logger (on main process only):
441
+ logger.info(f"Training/evaluation parameters {training_args}")
442
+
443
+ # Set seed before initializing model.
444
+ set_seed(training_args.seed)
445
+
446
+ # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
447
+ # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
448
+ # (the dataset will be downloaded automatically from the datasets Hub).
449
+ #
450
+ # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
451
+ # 'text' is found. You can easily tweak this behavior (see below).
452
+ if data_args.dataset_name is not None:
453
+ # Downloading and loading a dataset from the hub.
454
+ filepaths = {}
455
+ if data_args.train_file:
456
+ filepaths["train"] = data_args.train_file
457
+ if data_args.validation_file:
458
+ filepaths["validation"] = data_args.validation_file
459
+ try:
460
+ dataset = load_dataset(
461
+ data_args.dataset_name,
462
+ data_args.dataset_config_name,
463
+ cache_dir=model_args.cache_dir,
464
+ streaming=True,
465
+ split="train",
466
+ )
467
+ except Exception as exc:
468
+ logger.warning(
469
+ f"Unable to load local dataset with perplexity sampling support. Using huggingface.co/datasets/{data_args.dataset_name}: {exc}"
470
+ )
471
+ dataset = load_dataset(
472
+ data_args.dataset_name,
473
+ data_args.dataset_config_name,
474
+ cache_dir=model_args.cache_dir,
475
+ streaming=True,
476
+ split="train",
477
+ )
478
+
479
+ if model_args.config_name:
480
+ config = AutoConfig.from_pretrained(model_args.config_name, cache_dir=model_args.cache_dir)
481
+ elif model_args.model_name_or_path:
482
+ config = AutoConfig.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir)
483
+ else:
484
+ config = CONFIG_MAPPING[model_args.model_type]()
485
+ logger.warning("You are instantiating a new config instance from scratch.")
486
+
487
+ if model_args.tokenizer_name:
488
+ tokenizer = AutoTokenizer.from_pretrained(
489
+ model_args.tokenizer_name, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer
490
+ )
491
+ elif model_args.model_name_or_path:
492
+ tokenizer = AutoTokenizer.from_pretrained(
493
+ model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer
494
+ )
495
+ else:
496
+ raise ValueError(
497
+ "You are instantiating a new tokenizer from scratch. This is not supported by this script."
498
+ "You can do it from another script, save it, and load it from here, using --tokenizer_name."
499
+ )
500
+
501
+ # Otherwise, we tokenize every text, then concatenate them together before splitting them in smaller parts.
502
+ # We use `return_special_tokens_mask=True` because DataCollatorForLanguageModeling (see below) is more
503
+ # efficient when it receives the `special_tokens_mask`.
504
+ def tokenize_function(examples):
505
+ return tokenizer(
506
+ examples[data_args.text_column_name],
507
+ return_special_tokens_mask=True
508
+ )
509
+
510
+ tokenized_datasets = dataset.map(
511
+ tokenize_function,
512
+ batched=True,
513
+ )
514
+
515
+ shuffle_seed = training_args.seed
516
+ tokenized_datasets = tokenized_datasets.shuffle(buffer_size=data_args.shuffle_buffer_size, seed=shuffle_seed)
517
+
518
+ # Enable tensorboard only on the master node
519
+ has_tensorboard = is_tensorboard_available()
520
+ if has_tensorboard and jax.process_index() == 0:
521
+ try:
522
+ # Enable Weight&Biases
523
+ import wandb
524
+ wandb.init(
525
+ entity='wandb',
526
+ project='hf-flax-bertin-roberta-es',
527
+ sync_tensorboard=True,
528
+ )
529
+ wandb.config.update(training_args)
530
+ wandb.config.update(model_args)
531
+ wandb.config.update(data_args)
532
+ from flax.metrics.tensorboard import SummaryWriter
533
+ summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir))
534
+ except ImportError as ie:
535
+ has_tensorboard = False
536
+ logger.warning(
537
+ f"Unable to display metrics through TensorBoard because some package are not installed: {ie}"
538
+ )
539
+ else:
540
+ logger.warning(
541
+ "Unable to display metrics through TensorBoard because the package is not installed: "
542
+ "Please run pip install tensorboard to enable."
543
+ )
544
+
545
+ # Data collator
546
+ # This one will take care of randomly masking the tokens.
547
+ data_collator = FlaxDataCollatorForLanguageModeling(tokenizer=tokenizer, mlm_probability=data_args.mlm_probability)
548
+
549
+ # Initialize our training
550
+ rng = jax.random.PRNGKey(training_args.seed)
551
+ dropout_rngs = jax.random.split(rng, jax.local_device_count())
552
+
553
+ if model_args.model_name_or_path:
554
+ model = FlaxAutoModelForMaskedLM.from_pretrained(
555
+ model_args.model_name_or_path, config=config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype)
556
+ )
557
+ else:
558
+ model = FlaxAutoModelForMaskedLM.from_config(
559
+ config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype)
560
+ )
561
+
562
+ # Store some constant
563
+ num_epochs = int(training_args.num_train_epochs)
564
+ train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count()
565
+ eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count()
566
+
567
+ # define number steps per stream epoch
568
+ num_train_steps = data_args.num_train_steps
569
+
570
+ # Create learning rate schedule
571
+ warmup_fn = optax.linear_schedule(
572
+ init_value=0.0, end_value=training_args.learning_rate, transition_steps=training_args.warmup_steps
573
+ )
574
+ decay_fn = optax.linear_schedule(
575
+ init_value=training_args.learning_rate,
576
+ end_value=0,
577
+ transition_steps=num_train_steps - training_args.warmup_steps,
578
+ )
579
+ linear_decay_lr_schedule_fn = optax.join_schedules(
580
+ schedules=[warmup_fn, decay_fn], boundaries=[training_args.warmup_steps]
581
+ )
582
+
583
+ # We use Optax's "masking" functionality to not apply weight decay
584
+ # to bias and LayerNorm scale parameters. decay_mask_fn returns a
585
+ # mask boolean with the same structure as the parameters.
586
+ # The mask is True for parameters that should be decayed.
587
+ # Note that this mask is specifically adapted for FlaxBERT-like models.
588
+ # For other models, one should correct the layer norm parameter naming
589
+ # accordingly.
590
+ def decay_mask_fn(params):
591
+ flat_params = traverse_util.flatten_dict(params)
592
+ flat_mask = {path: (path[-1] != "bias" and path[-2:] != ("LayerNorm", "scale")) for path in flat_params}
593
+ return traverse_util.unflatten_dict(flat_mask)
594
+
595
+ # create adam optimizer
596
+ adamw = optax.adamw(
597
+ learning_rate=linear_decay_lr_schedule_fn,
598
+ b1=training_args.adam_beta1,
599
+ b2=training_args.adam_beta2,
600
+ eps=training_args.adam_epsilon,
601
+ weight_decay=training_args.weight_decay,
602
+ mask=decay_mask_fn,
603
+ )
604
+
605
+ # Setup train state
606
+ state = train_state.TrainState.create(apply_fn=model.__call__, params=model.params, tx=adamw)
607
+ saved_step = -1
608
+ if model_args.model_name_or_path and "checkpoint" in model_args.model_name_or_path:
609
+ params, opt_state, saved_step, args, data_collator = restore_checkpoint(model_args.model_name_or_path, state)
610
+ # Create learning rate schedule
611
+ warmup_fn = optax.linear_schedule(
612
+ init_value=0.0, end_value=args.learning_rate, transition_steps=args.warmup_steps
613
+ )
614
+ decay_fn = optax.linear_schedule(
615
+ init_value=args.learning_rate,
616
+ end_value=0,
617
+ transition_steps=data_args.num_train_steps - args.warmup_steps,
618
+ )
619
+ linear_decay_lr_schedule_fn = optax.join_schedules(
620
+ schedules=[warmup_fn, decay_fn], boundaries=[args.warmup_steps]
621
+ )
622
+ # create adam optimizer
623
+ adamw = optax.adamw(
624
+ learning_rate=linear_decay_lr_schedule_fn,
625
+ b1=training_args.adam_beta1,
626
+ b2=training_args.adam_beta2,
627
+ eps=training_args.adam_epsilon,
628
+ weight_decay=args.weight_decay,
629
+ mask=decay_mask_fn,
630
+ )
631
+ state = train_state.TrainState(
632
+ step=saved_step,
633
+ apply_fn=model.__call__,
634
+ params=params,
635
+ tx=adamw,
636
+ opt_state=opt_state,
637
+ )
638
+ # self.args = args
639
+ # data_collator = data_collator
640
+ # scheduler_fn = args.learning_rate
641
+ model.params = params
642
+
643
+
644
+ # Define gradient update step fn
645
+ def train_step(state, batch, dropout_rng):
646
+ dropout_rng, new_dropout_rng = jax.random.split(dropout_rng)
647
+
648
+ def loss_fn(params):
649
+ labels = batch.pop("labels")
650
+
651
+ logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0]
652
+
653
+ # compute loss, ignore padded input tokens
654
+ label_mask = jnp.where(labels > 0, 1.0, 0.0)
655
+ loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])) * label_mask
656
+
657
+ # take average
658
+ loss = loss.sum() / label_mask.sum()
659
+
660
+ return loss
661
+
662
+ grad_fn = jax.value_and_grad(loss_fn)
663
+ loss, grad = grad_fn(state.params)
664
+ grad = jax.lax.pmean(grad, "batch")
665
+ new_state = state.apply_gradients(grads=grad)
666
+
667
+ metrics = jax.lax.pmean(
668
+ {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)}, axis_name="batch"
669
+ )
670
+
671
+ return new_state, metrics, new_dropout_rng
672
+
673
+ # Create parallel version of the train step
674
+ p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,))
675
+
676
+ # Define eval fn
677
+ def eval_step(params, batch):
678
+ labels = batch.pop("labels")
679
+
680
+ logits = model(**batch, params=params, train=False)[0]
681
+
682
+ # compute loss, ignore padded input tokens
683
+ label_mask = jnp.where(labels > 0, 1.0, 0.0)
684
+ loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])) * label_mask
685
+
686
+ # compute accuracy
687
+ accuracy = jnp.equal(jnp.argmax(logits, axis=-1), labels) * label_mask
688
+
689
+ # summarize metrics
690
+ metrics = {"loss": loss.sum(), "accuracy": accuracy.sum(), "normalizer": label_mask.sum()}
691
+ metrics = jax.lax.psum(metrics, axis_name="batch")
692
+
693
+ return metrics
694
+
695
+ p_eval_step = jax.pmap(eval_step, "batch", donate_argnums=(0,))
696
+
697
+ # Replicate the train state on each device
698
+ state = jax_utils.replicate(state)
699
+
700
+ train_time = 0
701
+ train_start = time.time()
702
+ train_metrics = []
703
+ eval_metrics = []
704
+
705
+ training_iter = iter(tokenized_datasets)
706
+
707
+ max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)
708
+ eval_samples = advance_iter_and_group_samples(training_iter, data_args.num_eval_samples, max_seq_length)
709
+
710
+ last_desc = ""
711
+ steps = tqdm(range(num_train_steps), desc="Training...", position=0)
712
+ for step in range(num_train_steps):
713
+ if step < saved_step:
714
+ steps.update(1)
715
+ continue
716
+ # ======================== Training ================================
717
+ try:
718
+ samples = advance_iter_and_group_samples(training_iter, train_batch_size, max_seq_length)
719
+ except StopIteration:
720
+ # Once the end of the dataset stream is reached, the training iterator
721
+ # is reinitialized and reshuffled and a new eval dataset is randomely chosen.
722
+ shuffle_seed += 1
723
+ tokenized_datasets.set_epoch(shuffle_seed)
724
+
725
+ training_iter = iter(tokenized_datasets)
726
+
727
+ eval_dataset = advance_iter_and_group_samples(training_iter, data_args.num_eval_samples, max_seq_length)
728
+ samples = advance_iter_and_group_samples(training_iter, train_batch_size, max_seq_length)
729
+
730
+ # process input samples
731
+ model_inputs = data_collator(samples, pad_to_multiple_of=16)
732
+
733
+ # Model forward
734
+ model_inputs = shard(model_inputs.data)
735
+ state, train_metric, dropout_rngs = p_train_step(state, model_inputs, dropout_rngs)
736
+
737
+ train_metrics.append(train_metric)
738
+
739
+ if step % training_args.logging_steps == 0 and step > 0:
740
+ steps.write(
741
+ f"Step... ({step} | Loss: {train_metric['loss'].mean()}, Learning Rate: {train_metric['learning_rate'].mean()})"
742
+ )
743
+ train_time += time.time() - train_start
744
+ if has_tensorboard and jax.process_index() == 0:
745
+ write_train_metric(summary_writer, train_metrics, train_time, step)
746
+ train_metrics = []
747
+
748
+ # ======================== Evaluating ==============================
749
+ if step % training_args.eval_steps == 0 and step > 0:
750
+ eval_samples_idx = jnp.arange(data_args.num_eval_samples)
751
+ eval_batch_idx = generate_batch_splits(eval_samples_idx, eval_batch_size)
752
+
753
+ for i, batch_idx in enumerate(tqdm(eval_batch_idx, desc="Evaluating ...", position=1)):
754
+ # process input samples
755
+ batch_eval_samples = {k: [v[idx] for idx in batch_idx] for k, v in eval_samples.items()}
756
+ model_inputs = data_collator(batch_eval_samples, pad_to_multiple_of=16)
757
+
758
+ # Model forward
759
+ model_inputs = shard(model_inputs.data)
760
+ metrics = p_eval_step(state.params, model_inputs)
761
+ eval_metrics.append(metrics)
762
+
763
+ # normalize eval metrics
764
+ eval_metrics = get_metrics(eval_metrics)
765
+ eval_metrics = jax.tree_map(jnp.sum, eval_metrics)
766
+ eval_normalizer = eval_metrics.pop("normalizer")
767
+ eval_metrics = jax.tree_map(lambda x: x / eval_normalizer, eval_metrics)
768
+
769
+ # Update progress bar
770
+ steps.desc = f"Step... ({step}/{num_train_steps} | Loss: {eval_metrics['loss']}, Acc: {eval_metrics['accuracy']})"
771
+ last_desc = steps.desc
772
+
773
+ if has_tensorboard and jax.process_index() == 0:
774
+ write_eval_metric(summary_writer, eval_metrics, step)
775
+ eval_metrics = []
776
+
777
+ # save checkpoint after eval_steps
778
+ if step % training_args.save_steps == 0 and step > 0 and jax.process_index() == 0:
779
+ logger.info(f"Saving checkpoint at {step} steps")
780
+ params = jax.device_get(jax.tree_map(lambda x: x[0], state.params))
781
+ model.save_pretrained(
782
+ training_args.output_dir,
783
+ params=params,
784
+ push_to_hub=False,
785
+ )
786
+ save_checkpoint_files(state, data_collator, training_args, training_args.output_dir)
787
+ checkpoints_dir = Path(training_args.output_dir) / "checkpoints" / f"checkpoint-{step}"
788
+ checkpoints_dir.mkdir(parents=True, exist_ok=True)
789
+ model.save_pretrained(checkpoints_dir, params=params)
790
+ save_checkpoint_files(state, data_collator, training_args, checkpoints_dir)
791
+ rotate_checkpoints(
792
+ Path(training_args.output_dir) / "checkpoints",
793
+ max_checkpoints=training_args.save_total_limit
794
+ )
795
+ convert(training_args.output_dir, "./")
796
+ model.save_pretrained(
797
+ training_args.output_dir,
798
+ params=params,
799
+ push_to_hub=training_args.push_to_hub,
800
+ commit_message=last_desc,
801
+ )
802
+
803
+ # update tqdm bar
804
+ steps.update(1)
805
+
806
+ if jax.process_index() == 0:
807
+ logger.info(f"Saving checkpoint at {step} steps")
808
+ params = jax.device_get(jax.tree_map(lambda x: x[0], state.params))
809
+ model.save_pretrained(
810
+ training_args.output_dir,
811
+ params=params,
812
+ push_to_hub=False,
813
+ )
814
+ save_checkpoint_files(state, data_collator, training_args, training_args.output_dir)
815
+ checkpoints_dir = Path(training_args.output_dir) / "checkpoints" / f"checkpoint-{step}"
816
+ checkpoints_dir.mkdir(parents=True, exist_ok=True)
817
+ model.save_pretrained(checkpoints_dir, params=params)
818
+ save_checkpoint_files(state, data_collator, training_args, checkpoints_dir)
819
+ convert(training_args.output_dir, "./")
820
+ model.save_pretrained(
821
+ training_args.output_dir,
822
+ params=params,
823
+ push_to_hub=training_args.push_to_hub,
824
+ commit_message=last_desc or "Saving model after training",
825
+ )
run_stream.sh ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # From https://arxiv.org/pdf/1907.11692.pdf for base model
2
+ python3 -c "import jax; print('TPUs', jax.device_count())"
3
+ python3 ./run_mlm_flax_stream.py \
4
+ --output_dir="./outputs" \
5
+ --model_type="roberta" \
6
+ --config_name="./configs/base" \
7
+ --tokenizer_name="./" \
8
+ --dataset_name="munggok/KoPI" \
9
+ --dataset_config_name="full" \
10
+ --max_seq_length="512" \
11
+ --pad_to_max_length \
12
+ --per_device_train_batch_size="64" \
13
+ --per_device_eval_batch_size="64" \
14
+ --adam_beta1="0.9" \
15
+ --adam_beta2="0.98" \
16
+ --adam_epsilon="1e-6" \
17
+ --learning_rate="6e-4" \
18
+ --weight_decay="0.01" \
19
+ --save_steps="10000" \
20
+ --save_total_limit="5" \
21
+ --warmup_steps="24000" \
22
+ --overwrite_output_dir \
23
+ --num_train_steps="500000" \
24
+ --eval_steps="10000" \
25
+ --dtype="bfloat16" \
26
+ --logging_steps="500" 2>&1 | tee run_stream.log
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "eos_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "unk_token": {"content": "<unk>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "sep_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "pad_token": {"content": "<pad>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "cls_token": {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true}}
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"errors": "replace", "bos_token": {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "eos_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "sep_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "cls_token": {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "unk_token": {"content": "<unk>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "pad_token": {"content": "<pad>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "add_prefix_space": false, "trim_offsets": true, "max_len": 512, "special_tokens_map_file": null, "name_or_path": "./", "tokenizer_class": "RobertaTokenizer"}
tokens.py ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datasets import load_dataset
2
+ from tokenizers import ByteLevelBPETokenizer
3
+
4
+ # Load dataset
5
+ kopi = load_dataset("/data/final_train.py", "full",split='train',cache_dir="/data/cache")
6
+
7
+ datasetv2 = kopi.shuffle(seed=42)
8
+ dataset = datasetv2[0:8000000]
9
+
10
+ # Instantiate tokenizer
11
+ tokenizer = ByteLevelBPETokenizer()
12
+ def batch_iterator(batch_size=100_000):
13
+ for i in range(0, len(dataset), batch_size):
14
+ yield dataset["text"][i: i + batch_size]
15
+
16
+ # Customized training
17
+ tokenizer.train_from_iterator(batch_iterator(), vocab_size=50265, min_frequency=2, special_tokens=[
18
+ "<s>",
19
+ "<pad>",
20
+ "</s>",
21
+ "<unk>",
22
+ "<mask>",
23
+ ])
24
+ # Save files to disk
25
+ tokenizer.save("./tokenizer.json")
training_state.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"step": 100001}