Text Generation
Transformers
PyTorch
English
gptj
Inference Endpoints
adamluc juewang commited on
Commit
78e668f
·
0 Parent(s):

Duplicate from togethercomputer/GPT-JT-6B-v1

Browse files

Co-authored-by: Jue Wang <[email protected]>

.gitattributes ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tflite filter=lfs diff=lfs merge=lfs -text
29
+ *.tgz filter=lfs diff=lfs merge=lfs -text
30
+ *.wasm filter=lfs diff=lfs merge=lfs -text
31
+ *.xz filter=lfs diff=lfs merge=lfs -text
32
+ *.zip filter=lfs diff=lfs merge=lfs -text
33
+ *.zst filter=lfs diff=lfs merge=lfs -text
34
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,185 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - natural_instructions
4
+ - the_pile
5
+ - cot
6
+ - Muennighoff/P3
7
+ inference:
8
+ parameters:
9
+ max_new_tokens: 5
10
+ temperature: 1
11
+ top_k: 1
12
+ license: apache-2.0
13
+ language:
14
+ - en
15
+ pipeline_tag: text-generation
16
+ widget:
17
+ - example_title: Sentiment Analysis
18
+ text: >-
19
+ The task is to label the post's emotion as sadness, joy, love, anger, fear,
20
+ or surprise.
21
+
22
+
23
+ Input: I'm feeling quite sad and sorry for myself but ill snap out of it
24
+ soon.
25
+
26
+ Output: sadness
27
+
28
+
29
+ Input: I am just feeling cranky and blue.
30
+
31
+ Output: anger
32
+
33
+
34
+ Input: I can have for a treat or if i am feeling festive.
35
+
36
+ Output:
37
+ - example_title: Country Currency
38
+ text: |-
39
+ Return the currency of the given country.
40
+
41
+ Input: Switzerland
42
+ Output: Swiss Franc
43
+
44
+ Input: India
45
+ Output:
46
+ - example_title: Tweet Eval Hate
47
+ text: >-
48
+ Label whether the following tweet contains hate speech against either
49
+ immigrants or women. Hate Speech (HS) is commonly defined as any
50
+ communication that disparages a person or a group on the basis of some
51
+ characteristic such as race, color, ethnicity, gender, sexual orientation,
52
+ nationality, religion, or other characteristics.
53
+
54
+ Possible labels:
55
+
56
+ 1. hate speech
57
+
58
+ 2. not hate speech
59
+
60
+
61
+ Tweet: HOW REFRESHING! In South Korea, there is no such thing as 'political
62
+ correctness" when it comes to dealing with Muslim refugee wannabes via @user
63
+
64
+ Label: hate speech
65
+
66
+
67
+ Tweet: New to Twitter-- any men on here know what the process is to get
68
+ #verified?
69
+
70
+ Label: not hate speech
71
+
72
+
73
+ Tweet: Dont worry @user you are and will always be the most hysterical
74
+ woman.
75
+
76
+ Label:
77
+ - example_title: Entity Recognition
78
+ text: >-
79
+ Extract all the names of people, places, and organizations from the
80
+ following sentences.
81
+
82
+
83
+ Sentence: Satya Nadella, the CEO of Microsoft, was visiting the Bahamas last
84
+ May.
85
+
86
+ Entities: Satya Nadella, Microsoft, Bahamas
87
+
88
+
89
+ Sentence: Pacific Northwest cities include Seattle and Portland, which I
90
+ have visited with Vikash.
91
+
92
+ Entities:
93
+ - example_title: Data Clearning
94
+ text: |-
95
+ Format the data into a CSV file:
96
+
97
+ Input: Jane Doe [email protected] (520) 382 2435
98
+ Output: Jane Doe,[email protected],520-382-2435
99
+
100
+ Input: Peter Lee (510) 333-2429 email: [email protected]
101
+ Output:
102
+ duplicated_from: togethercomputer/GPT-JT-6B-v1
103
+ ---
104
+
105
+ <h1 style="font-size: 42px">GPT-JT<h1/>
106
+
107
+
108
+ ***<p style="font-size: 24px">Feel free to try out our [Online Demo](https://huggingface.co/spaces/togethercomputer/GPT-JT)!</p>***
109
+
110
+
111
+ # Model Summary
112
+
113
+ > With a new decentralized training algorithm, we fine-tuned GPT-J (6B) on 3.53 billion tokens, resulting in GPT-JT (6B), a model that outperforms many 100B+ parameter models on classification benchmarks.
114
+
115
+ We incorporated a collection of open techniques and datasets to build GPT-JT:
116
+ - GPT-JT is a fork of [EleutherAI](https://www.eleuther.ai)'s [GPT-J (6B)](https://huggingface.co/EleutherAI/gpt-j-6B);
117
+ - We used [UL2](https://github.com/google-research/google-research/tree/master/ul2)'s training objective, allowing the model to see bidirectional context of the prompt;
118
+ - The model was trained on a large collection of diverse data, including [Chain-of-Thought (CoT)](https://ai.googleblog.com/2022/05/language-models-perform-reasoning-via.html), [Public Pool of Prompts (P3) dataset](https://huggingface.co/datasets/bigscience/P3), [Natural-Instructions (NI) dataset](https://github.com/allenai/natural-instructions).
119
+
120
+ With the help of techniques mentioned above, GPT-JT significantly improves the performance of classification tasks over the original GPT-J, and even outperforms most 100B+ parameter models!
121
+
122
+ # Quick Start
123
+
124
+ ```python
125
+ from transformers import pipeline
126
+ pipe = pipeline(model='togethercomputer/GPT-JT-6B-v1')
127
+ pipe('''"I love this!" Is it positive? A:''')
128
+ ```
129
+ or
130
+ ```python
131
+ from transformers import AutoTokenizer, AutoModelForCausalLM
132
+ tokenizer = AutoTokenizer.from_pretrained("togethercomputer/GPT-JT-6B-v1")
133
+ model = AutoModelForCausalLM.from_pretrained("togethercomputer/GPT-JT-6B-v1")
134
+ ```
135
+
136
+ # License
137
+
138
+ The weights of GPT-JT-6B-v1 are licensed under version 2.0 of the Apache License.
139
+
140
+ # Training Details
141
+
142
+ ## UL2 Training Objective
143
+
144
+ We train GPT-JT using UL2 training objective [1][2].
145
+ The original GPT-J uses causal mask (as shown below left) for autoregressive generation. So for each token, it can only see its previous context.
146
+ In order to fully leverage the context information, we continue to train GPT-J with UL2 training objectives, and uses causal mask with prefix (as shown below right) -- using bidirectional attention for the prompt / input and causal attention for token generation.
147
+ Intuitively, being able to see context bidirectionally might improve downstream tasks that require this information.
148
+
149
+ $$
150
+ \begin{bmatrix}
151
+ 1 & 0 & 0 & 0 & 0 \\
152
+ 1 & 1 & 0 & 0 & 0 \\
153
+ 1 & 1 & 1 & 0 & 0 \\
154
+ 1 & 1 & 1 & 1 & 0 \\
155
+ 1 & 1 & 1 & 1 & 1
156
+ \end{bmatrix}
157
+
158
+ \begin{bmatrix}
159
+ 1 & 1 & 1 & 0 & 0 \\
160
+ 1 & 1 & 1 & 0 & 0 \\
161
+ 1 & 1 & 1 & 0 & 0 \\
162
+ 1 & 1 & 1 & 1 & 0 \\
163
+ 1 & 1 & 1 & 1 & 1
164
+ \end{bmatrix}
165
+ $$
166
+
167
+ Furthermore, we leverage a large collection of data, including [Natural-Instructions](https://github.com/allenai/natural-instructions), [P3](https://huggingface.co/datasets/Muennighoff/P3), [MMLU-COT](https://github.com/jasonwei20/flan-2/blob/main/mmlu-cot.json), and [the Pile](https://huggingface.co/datasets/the_pile)
168
+ Specifically, we first conduct training for 2.62 billion tokens using the UL2 loss on the Pile, followed by 0.92 billion tokens with a mixture of the above datasets: 5% of COT, 20% of P3, 20% of NI, and 55% of the Pile.
169
+
170
+ ## Hyperparameters
171
+
172
+ We used AdamW with a learning rate of 1e-5 and global batch size of 64 (16 for each data parallel worker).
173
+ We used mix-precision training where the activation is in FP16 while the optimizer states are kept in FP32.
174
+ We use both data parallelism and pipeline parallelism to conduct training.
175
+ During training, we truncate the input sequence to 2048 tokens, and for input sequence that contains less than 2048 tokens, we concatenate multiple sequences into one long sequence to improve the data efficiency.
176
+
177
+ ## Infrastructure
178
+
179
+ We used [the Together Research Computer](https://together.xyz/) to conduct training.
180
+
181
+ # References
182
+
183
+ [1]: Tay, Yi, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, and Donald Metzler. "Unifying Language Learning Paradigms." arXiv preprint arXiv:2205.05131 (2022).
184
+
185
+ [2]: Tay, Yi, Jason Wei, Hyung Won Chung, Vinh Q. Tran, David R. So, Siamak Shakeri, Xavier Garcia et al. "Transcending scaling laws with 0.1% extra compute." arXiv preprint arXiv:2210.11399 (2022).
added_tokens.json ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<|extratoken_100|>": 50356,
3
+ "<|extratoken_101|>": 50357,
4
+ "<|extratoken_102|>": 50358,
5
+ "<|extratoken_103|>": 50359,
6
+ "<|extratoken_104|>": 50360,
7
+ "<|extratoken_105|>": 50361,
8
+ "<|extratoken_106|>": 50362,
9
+ "<|extratoken_107|>": 50363,
10
+ "<|extratoken_108|>": 50364,
11
+ "<|extratoken_109|>": 50365,
12
+ "<|extratoken_10|>": 50266,
13
+ "<|extratoken_110|>": 50366,
14
+ "<|extratoken_111|>": 50367,
15
+ "<|extratoken_112|>": 50368,
16
+ "<|extratoken_113|>": 50369,
17
+ "<|extratoken_114|>": 50370,
18
+ "<|extratoken_115|>": 50371,
19
+ "<|extratoken_116|>": 50372,
20
+ "<|extratoken_117|>": 50373,
21
+ "<|extratoken_118|>": 50374,
22
+ "<|extratoken_119|>": 50375,
23
+ "<|extratoken_11|>": 50267,
24
+ "<|extratoken_120|>": 50376,
25
+ "<|extratoken_121|>": 50377,
26
+ "<|extratoken_122|>": 50378,
27
+ "<|extratoken_123|>": 50379,
28
+ "<|extratoken_124|>": 50380,
29
+ "<|extratoken_125|>": 50381,
30
+ "<|extratoken_126|>": 50382,
31
+ "<|extratoken_127|>": 50383,
32
+ "<|extratoken_128|>": 50384,
33
+ "<|extratoken_129|>": 50385,
34
+ "<|extratoken_12|>": 50268,
35
+ "<|extratoken_130|>": 50386,
36
+ "<|extratoken_131|>": 50387,
37
+ "<|extratoken_132|>": 50388,
38
+ "<|extratoken_133|>": 50389,
39
+ "<|extratoken_134|>": 50390,
40
+ "<|extratoken_135|>": 50391,
41
+ "<|extratoken_136|>": 50392,
42
+ "<|extratoken_137|>": 50393,
43
+ "<|extratoken_138|>": 50394,
44
+ "<|extratoken_139|>": 50395,
45
+ "<|extratoken_13|>": 50269,
46
+ "<|extratoken_140|>": 50396,
47
+ "<|extratoken_141|>": 50397,
48
+ "<|extratoken_142|>": 50398,
49
+ "<|extratoken_143|>": 50399,
50
+ "<|extratoken_14|>": 50270,
51
+ "<|extratoken_15|>": 50271,
52
+ "<|extratoken_16|>": 50272,
53
+ "<|extratoken_17|>": 50273,
54
+ "<|extratoken_18|>": 50274,
55
+ "<|extratoken_19|>": 50275,
56
+ "<|extratoken_1|>": 50257,
57
+ "<|extratoken_20|>": 50276,
58
+ "<|extratoken_21|>": 50277,
59
+ "<|extratoken_22|>": 50278,
60
+ "<|extratoken_23|>": 50279,
61
+ "<|extratoken_24|>": 50280,
62
+ "<|extratoken_25|>": 50281,
63
+ "<|extratoken_26|>": 50282,
64
+ "<|extratoken_27|>": 50283,
65
+ "<|extratoken_28|>": 50284,
66
+ "<|extratoken_29|>": 50285,
67
+ "<|extratoken_2|>": 50258,
68
+ "<|extratoken_30|>": 50286,
69
+ "<|extratoken_31|>": 50287,
70
+ "<|extratoken_32|>": 50288,
71
+ "<|extratoken_33|>": 50289,
72
+ "<|extratoken_34|>": 50290,
73
+ "<|extratoken_35|>": 50291,
74
+ "<|extratoken_36|>": 50292,
75
+ "<|extratoken_37|>": 50293,
76
+ "<|extratoken_38|>": 50294,
77
+ "<|extratoken_39|>": 50295,
78
+ "<|extratoken_3|>": 50259,
79
+ "<|extratoken_40|>": 50296,
80
+ "<|extratoken_41|>": 50297,
81
+ "<|extratoken_42|>": 50298,
82
+ "<|extratoken_43|>": 50299,
83
+ "<|extratoken_44|>": 50300,
84
+ "<|extratoken_45|>": 50301,
85
+ "<|extratoken_46|>": 50302,
86
+ "<|extratoken_47|>": 50303,
87
+ "<|extratoken_48|>": 50304,
88
+ "<|extratoken_49|>": 50305,
89
+ "<|extratoken_4|>": 50260,
90
+ "<|extratoken_50|>": 50306,
91
+ "<|extratoken_51|>": 50307,
92
+ "<|extratoken_52|>": 50308,
93
+ "<|extratoken_53|>": 50309,
94
+ "<|extratoken_54|>": 50310,
95
+ "<|extratoken_55|>": 50311,
96
+ "<|extratoken_56|>": 50312,
97
+ "<|extratoken_57|>": 50313,
98
+ "<|extratoken_58|>": 50314,
99
+ "<|extratoken_59|>": 50315,
100
+ "<|extratoken_5|>": 50261,
101
+ "<|extratoken_60|>": 50316,
102
+ "<|extratoken_61|>": 50317,
103
+ "<|extratoken_62|>": 50318,
104
+ "<|extratoken_63|>": 50319,
105
+ "<|extratoken_64|>": 50320,
106
+ "<|extratoken_65|>": 50321,
107
+ "<|extratoken_66|>": 50322,
108
+ "<|extratoken_67|>": 50323,
109
+ "<|extratoken_68|>": 50324,
110
+ "<|extratoken_69|>": 50325,
111
+ "<|extratoken_6|>": 50262,
112
+ "<|extratoken_70|>": 50326,
113
+ "<|extratoken_71|>": 50327,
114
+ "<|extratoken_72|>": 50328,
115
+ "<|extratoken_73|>": 50329,
116
+ "<|extratoken_74|>": 50330,
117
+ "<|extratoken_75|>": 50331,
118
+ "<|extratoken_76|>": 50332,
119
+ "<|extratoken_77|>": 50333,
120
+ "<|extratoken_78|>": 50334,
121
+ "<|extratoken_79|>": 50335,
122
+ "<|extratoken_7|>": 50263,
123
+ "<|extratoken_80|>": 50336,
124
+ "<|extratoken_81|>": 50337,
125
+ "<|extratoken_82|>": 50338,
126
+ "<|extratoken_83|>": 50339,
127
+ "<|extratoken_84|>": 50340,
128
+ "<|extratoken_85|>": 50341,
129
+ "<|extratoken_86|>": 50342,
130
+ "<|extratoken_87|>": 50343,
131
+ "<|extratoken_88|>": 50344,
132
+ "<|extratoken_89|>": 50345,
133
+ "<|extratoken_8|>": 50264,
134
+ "<|extratoken_90|>": 50346,
135
+ "<|extratoken_91|>": 50347,
136
+ "<|extratoken_92|>": 50348,
137
+ "<|extratoken_93|>": 50349,
138
+ "<|extratoken_94|>": 50350,
139
+ "<|extratoken_95|>": 50351,
140
+ "<|extratoken_96|>": 50352,
141
+ "<|extratoken_97|>": 50353,
142
+ "<|extratoken_98|>": 50354,
143
+ "<|extratoken_99|>": 50355,
144
+ "<|extratoken_9|>": 50265
145
+ }
config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "togethercomputer/GPT-JT-6B-v1",
3
+ "activation_function": "gelu_new",
4
+ "architectures": [
5
+ "GPTJForCausalLM"
6
+ ],
7
+ "attn_pdrop": 0.0,
8
+ "bos_token_id": 50256,
9
+ "embd_pdrop": 0.0,
10
+ "eos_token_id": 50256,
11
+ "gradient_checkpointing": false,
12
+ "initializer_range": 0.02,
13
+ "layer_norm_epsilon": 1e-05,
14
+ "model_type": "gptj",
15
+ "n_embd": 4096,
16
+ "n_head": 16,
17
+ "n_inner": null,
18
+ "n_layer": 28,
19
+ "n_positions": 2048,
20
+ "resid_pdrop": 0.0,
21
+ "rotary": true,
22
+ "rotary_dim": 64,
23
+ "scale_attn_weights": true,
24
+ "summary_activation": null,
25
+ "summary_first_dropout": 0.1,
26
+ "summary_proj_to_labels": true,
27
+ "summary_type": "cls_index",
28
+ "summary_use_proj": true,
29
+ "task_specific_params": {
30
+ "text-generation": {
31
+ "do_sample": true,
32
+ "max_length": 50,
33
+ "temperature": 0.6
34
+ }
35
+ },
36
+ "tie_word_embeddings": false,
37
+ "tokenizer_class": "GPT2Tokenizer",
38
+ "torch_dtype": "float16",
39
+ "transformers_version": "4.21.1",
40
+ "use_cache": true,
41
+ "vocab_size": 50400
42
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:229dde9fafdbca6c993c719eba8b1e9fd9423edd482a4afdbd4d0a139f447b81
3
+ size 12219313951
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|endoftext|>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|endoftext|>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "unk_token": {
17
+ "content": "<|endoftext|>",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "bos_token": {
5
+ "__type": "AddedToken",
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": true,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "eos_token": {
13
+ "__type": "AddedToken",
14
+ "content": "<|endoftext|>",
15
+ "lstrip": false,
16
+ "normalized": true,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ },
20
+ "errors": "replace",
21
+ "model_max_length": 2048,
22
+ "name_or_path": "EleutherAI/gpt-j-6B",
23
+ "pad_token": null,
24
+ "special_tokens_map_file": null,
25
+ "tokenizer_class": "GPT2Tokenizer",
26
+ "unk_token": {
27
+ "__type": "AddedToken",
28
+ "content": "<|endoftext|>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false
33
+ }
34
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff