leaderboard-pr-bot commited on
Commit
a299271
·
verified ·
1 Parent(s): 3fbaa29

Adding Evaluation Results

Browse files

This is an automated PR created with https://huggingface.co/spaces/Weyaxi/open-llm-leaderboard-results-pr

The purpose of this PR is to add evaluation results from the Open LLM Leaderboard to your model card.

If you encounter any issues, please report them to https://huggingface.co/spaces/Weyaxi/open-llm-leaderboard-results-pr/discussions

Files changed (1) hide show
  1. README.md +119 -3
README.md CHANGED
@@ -1,11 +1,114 @@
1
  ---
2
  license: other
3
- license_name: yi-license
4
- license_link: LICENSE
5
  tags:
6
  - lora
7
  - qlora
8
  - adapter
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  ---
10
  This is not an instruct fine tune, instead it's an attempt to de-contaminate the model, remove gptslop and refusals. I want model to feel like it was trained on human data, not synthetic one.
11
 
@@ -16,4 +119,17 @@ Training done on RTX 3090 Ti in about 14 hours. \
16
  Average mem usage was like 23.89 / 23.99 GiB, so very close to OOM at all times. \
17
  I trained it with XFCE on one 1080p monitor loaded up, on more fancy DM it would probably OOM with the same setup. \
18
  I am not sure what's the purpose of max_prompt_length being separate from max_length, so I may have used it wrong, I should read up on it. \
19
- Script I used to do this fine-tune is in the repo. I used chatml prompt format. Now I plan to fine-tune this on AEZAKMI v3 dataset soon.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: other
 
 
3
  tags:
4
  - lora
5
  - qlora
6
  - adapter
7
+ license_name: yi-license
8
+ license_link: LICENSE
9
+ model-index:
10
+ - name: Yi-34b-200K-rawrr-v2-run-0902-LoRA
11
+ results:
12
+ - task:
13
+ type: text-generation
14
+ name: Text Generation
15
+ dataset:
16
+ name: AI2 Reasoning Challenge (25-Shot)
17
+ type: ai2_arc
18
+ config: ARC-Challenge
19
+ split: test
20
+ args:
21
+ num_few_shot: 25
22
+ metrics:
23
+ - type: acc_norm
24
+ value: 64.68
25
+ name: normalized accuracy
26
+ source:
27
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=adamo1139/Yi-34b-200K-rawrr-v2-run-0902-LoRA
28
+ name: Open LLM Leaderboard
29
+ - task:
30
+ type: text-generation
31
+ name: Text Generation
32
+ dataset:
33
+ name: HellaSwag (10-Shot)
34
+ type: hellaswag
35
+ split: validation
36
+ args:
37
+ num_few_shot: 10
38
+ metrics:
39
+ - type: acc_norm
40
+ value: 84.5
41
+ name: normalized accuracy
42
+ source:
43
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=adamo1139/Yi-34b-200K-rawrr-v2-run-0902-LoRA
44
+ name: Open LLM Leaderboard
45
+ - task:
46
+ type: text-generation
47
+ name: Text Generation
48
+ dataset:
49
+ name: MMLU (5-Shot)
50
+ type: cais/mmlu
51
+ config: all
52
+ split: test
53
+ args:
54
+ num_few_shot: 5
55
+ metrics:
56
+ - type: acc
57
+ value: 75.76
58
+ name: accuracy
59
+ source:
60
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=adamo1139/Yi-34b-200K-rawrr-v2-run-0902-LoRA
61
+ name: Open LLM Leaderboard
62
+ - task:
63
+ type: text-generation
64
+ name: Text Generation
65
+ dataset:
66
+ name: TruthfulQA (0-shot)
67
+ type: truthful_qa
68
+ config: multiple_choice
69
+ split: validation
70
+ args:
71
+ num_few_shot: 0
72
+ metrics:
73
+ - type: mc2
74
+ value: 46.66
75
+ source:
76
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=adamo1139/Yi-34b-200K-rawrr-v2-run-0902-LoRA
77
+ name: Open LLM Leaderboard
78
+ - task:
79
+ type: text-generation
80
+ name: Text Generation
81
+ dataset:
82
+ name: Winogrande (5-shot)
83
+ type: winogrande
84
+ config: winogrande_xl
85
+ split: validation
86
+ args:
87
+ num_few_shot: 5
88
+ metrics:
89
+ - type: acc
90
+ value: 81.14
91
+ name: accuracy
92
+ source:
93
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=adamo1139/Yi-34b-200K-rawrr-v2-run-0902-LoRA
94
+ name: Open LLM Leaderboard
95
+ - task:
96
+ type: text-generation
97
+ name: Text Generation
98
+ dataset:
99
+ name: GSM8k (5-shot)
100
+ type: gsm8k
101
+ config: main
102
+ split: test
103
+ args:
104
+ num_few_shot: 5
105
+ metrics:
106
+ - type: acc
107
+ value: 62.17
108
+ name: accuracy
109
+ source:
110
+ url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=adamo1139/Yi-34b-200K-rawrr-v2-run-0902-LoRA
111
+ name: Open LLM Leaderboard
112
  ---
113
  This is not an instruct fine tune, instead it's an attempt to de-contaminate the model, remove gptslop and refusals. I want model to feel like it was trained on human data, not synthetic one.
114
 
 
119
  Average mem usage was like 23.89 / 23.99 GiB, so very close to OOM at all times. \
120
  I trained it with XFCE on one 1080p monitor loaded up, on more fancy DM it would probably OOM with the same setup. \
121
  I am not sure what's the purpose of max_prompt_length being separate from max_length, so I may have used it wrong, I should read up on it. \
122
+ Script I used to do this fine-tune is in the repo. I used chatml prompt format. Now I plan to fine-tune this on AEZAKMI v3 dataset soon.
123
+ # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
124
+ Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_adamo1139__Yi-34b-200K-rawrr-v2-run-0902-LoRA)
125
+
126
+ | Metric |Value|
127
+ |---------------------------------|----:|
128
+ |Avg. |69.15|
129
+ |AI2 Reasoning Challenge (25-Shot)|64.68|
130
+ |HellaSwag (10-Shot) |84.50|
131
+ |MMLU (5-Shot) |75.76|
132
+ |TruthfulQA (0-shot) |46.66|
133
+ |Winogrande (5-shot) |81.14|
134
+ |GSM8k (5-shot) |62.17|
135
+