File size: 15,608 Bytes
ef8fe6d
 
 
 
 
 
 
 
 
 
 
 
e01ca0f
ef8fe6d
 
 
 
 
 
 
e01ca0f
ef8fe6d
e01ca0f
 
 
 
 
 
 
 
ef8fe6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
739402b
ef8fe6d
 
 
 
739402b
ef8fe6d
 
 
 
 
e01ca0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef8fe6d
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
---
license: mit
base_model: prajjwal1/bert-small
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: sembr2023-bert-small
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# sembr2023-bert-small

This model is a fine-tuned version of [prajjwal1/bert-small](https://huggingface.co/prajjwal1/bert-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2324
- Precision: 0.7915
- Recall: 0.8418
- F1: 0.8159
- Iou: 0.6890
- Accuracy: 0.9651
- Balanced Accuracy: 0.9097
- Overall Accuracy: 0.9481

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- training_steps: 1000

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Iou    | Accuracy | Balanced Accuracy | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:------:|:--------:|:-----------------:|:----------------:|
| 0.4134        | 0.06  | 10   | 0.4107          | 0         | 0.0    | 0.0    | 0.0    | 0.9080   | 0.5               | 0.9080           |
| 0.371         | 0.12  | 20   | 0.3698          | 0         | 0.0    | 0.0    | 0.0    | 0.9080   | 0.5               | 0.9080           |
| 0.2913        | 0.18  | 30   | 0.2672          | 0.8443    | 0.4167 | 0.5580 | 0.3870 | 0.9393   | 0.7045            | 0.9283           |
| 0.2315        | 0.24  | 40   | 0.2184          | 0.8043    | 0.6761 | 0.7346 | 0.5806 | 0.9551   | 0.8297            | 0.9364           |
| 0.1693        | 0.3   | 50   | 0.2021          | 0.8064    | 0.7375 | 0.7704 | 0.6265 | 0.9596   | 0.8598            | 0.9396           |
| 0.1812        | 0.36  | 60   | 0.1869          | 0.8727    | 0.6847 | 0.7674 | 0.6225 | 0.9618   | 0.8373            | 0.9437           |
| 0.1745        | 0.42  | 70   | 0.1855          | 0.8021    | 0.7744 | 0.7880 | 0.6502 | 0.9617   | 0.8775            | 0.9421           |
| 0.1577        | 0.48  | 80   | 0.1817          | 0.8207    | 0.7641 | 0.7914 | 0.6548 | 0.9630   | 0.8736            | 0.9431           |
| 0.1458        | 0.55  | 90   | 0.1763          | 0.8183    | 0.7869 | 0.8023 | 0.6698 | 0.9643   | 0.8846            | 0.9449           |
| 0.1343        | 0.61  | 100  | 0.1772          | 0.8721    | 0.7372 | 0.7990 | 0.6652 | 0.9659   | 0.8631            | 0.9477           |
| 0.1442        | 0.67  | 110  | 0.1647          | 0.8388    | 0.7795 | 0.8081 | 0.6779 | 0.9659   | 0.8822            | 0.9483           |
| 0.1104        | 0.73  | 120  | 0.1678          | 0.8488    | 0.7679 | 0.8063 | 0.6755 | 0.9661   | 0.8770            | 0.9479           |
| 0.1089        | 0.79  | 130  | 0.1745          | 0.7882    | 0.8262 | 0.8068 | 0.6761 | 0.9636   | 0.9019            | 0.9434           |
| 0.1437        | 0.85  | 140  | 0.1768          | 0.7970    | 0.8206 | 0.8086 | 0.6787 | 0.9643   | 0.8997            | 0.9440           |
| 0.1104        | 0.91  | 150  | 0.1710          | 0.7961    | 0.8275 | 0.8115 | 0.6828 | 0.9646   | 0.9030            | 0.9446           |
| 0.0941        | 0.97  | 160  | 0.1647          | 0.8007    | 0.8167 | 0.8086 | 0.6787 | 0.9644   | 0.8980            | 0.9456           |
| 0.1146        | 1.03  | 170  | 0.1744          | 0.8026    | 0.8250 | 0.8136 | 0.6858 | 0.9652   | 0.9022            | 0.9456           |
| 0.0982        | 1.09  | 180  | 0.1636          | 0.8175    | 0.8191 | 0.8183 | 0.6925 | 0.9666   | 0.9003            | 0.9468           |
| 0.0875        | 1.15  | 190  | 0.1653          | 0.8305    | 0.8064 | 0.8183 | 0.6924 | 0.9671   | 0.8948            | 0.9476           |
| 0.0962        | 1.21  | 200  | 0.1610          | 0.8340    | 0.8076 | 0.8206 | 0.6958 | 0.9675   | 0.8957            | 0.9490           |
| 0.084         | 1.27  | 210  | 0.1671          | 0.8232    | 0.8177 | 0.8204 | 0.6955 | 0.9671   | 0.9000            | 0.9476           |
| 0.07          | 1.33  | 220  | 0.1665          | 0.7909    | 0.8545 | 0.8215 | 0.6971 | 0.9658   | 0.9158            | 0.9454           |
| 0.0785        | 1.39  | 230  | 0.1612          | 0.8411    | 0.8004 | 0.8202 | 0.6953 | 0.9677   | 0.8925            | 0.9496           |
| 0.0712        | 1.45  | 240  | 0.1638          | 0.8251    | 0.8161 | 0.8205 | 0.6957 | 0.9672   | 0.8993            | 0.9491           |
| 0.0683        | 1.52  | 250  | 0.1823          | 0.8097    | 0.8262 | 0.8179 | 0.6919 | 0.9662   | 0.9033            | 0.9463           |
| 0.0694        | 1.58  | 260  | 0.1717          | 0.8028    | 0.8408 | 0.8214 | 0.6969 | 0.9664   | 0.9099            | 0.9474           |
| 0.0809        | 1.64  | 270  | 0.1681          | 0.8304    | 0.8102 | 0.8202 | 0.6952 | 0.9673   | 0.8967            | 0.9491           |
| 0.0586        | 1.7   | 280  | 0.1811          | 0.8096    | 0.8391 | 0.8241 | 0.7008 | 0.9671   | 0.9096            | 0.9478           |
| 0.069         | 1.76  | 290  | 0.1855          | 0.8088    | 0.8284 | 0.8185 | 0.6928 | 0.9662   | 0.9043            | 0.9478           |
| 0.0739        | 1.82  | 300  | 0.1876          | 0.8148    | 0.8209 | 0.8178 | 0.6918 | 0.9664   | 0.9010            | 0.9476           |
| 0.0691        | 1.88  | 310  | 0.1741          | 0.8173    | 0.8206 | 0.8190 | 0.6934 | 0.9666   | 0.9010            | 0.9485           |
| 0.0728        | 1.94  | 320  | 0.1765          | 0.7941    | 0.8346 | 0.8139 | 0.6861 | 0.9649   | 0.9064            | 0.9469           |
| 0.0585        | 2.0   | 330  | 0.1800          | 0.8118    | 0.8166 | 0.8142 | 0.6866 | 0.9657   | 0.8987            | 0.9483           |
| 0.0602        | 2.06  | 340  | 0.1930          | 0.7969    | 0.8366 | 0.8162 | 0.6895 | 0.9654   | 0.9075            | 0.9461           |
| 0.0557        | 2.12  | 350  | 0.1832          | 0.7915    | 0.8401 | 0.8151 | 0.6879 | 0.9649   | 0.9089            | 0.9472           |
| 0.0491        | 2.18  | 360  | 0.1914          | 0.8131    | 0.8136 | 0.8134 | 0.6854 | 0.9657   | 0.8973            | 0.9489           |
| 0.0413        | 2.24  | 370  | 0.2116          | 0.7989    | 0.8288 | 0.8136 | 0.6857 | 0.9651   | 0.9038            | 0.9463           |
| 0.051         | 2.3   | 380  | 0.2073          | 0.7864    | 0.8454 | 0.8148 | 0.6875 | 0.9647   | 0.9111            | 0.9460           |
| 0.0529        | 2.36  | 390  | 0.1923          | 0.8103    | 0.8278 | 0.8190 | 0.6934 | 0.9663   | 0.9041            | 0.9496           |
| 0.0469        | 2.42  | 400  | 0.1808          | 0.8131    | 0.8217 | 0.8173 | 0.6911 | 0.9662   | 0.9013            | 0.9497           |
| 0.0579        | 2.48  | 410  | 0.2053          | 0.7795    | 0.8493 | 0.8129 | 0.6848 | 0.9640   | 0.9125            | 0.9464           |
| 0.0494        | 2.55  | 420  | 0.1953          | 0.7872    | 0.8457 | 0.8154 | 0.6883 | 0.9648   | 0.9113            | 0.9471           |
| 0.0468        | 2.61  | 430  | 0.1972          | 0.8064    | 0.8182 | 0.8123 | 0.6839 | 0.9652   | 0.8992            | 0.9488           |
| 0.0545        | 2.67  | 440  | 0.2116          | 0.7774    | 0.8455 | 0.8100 | 0.6807 | 0.9635   | 0.9105            | 0.9458           |
| 0.0544        | 2.73  | 450  | 0.1954          | 0.7868    | 0.8455 | 0.8151 | 0.6879 | 0.9647   | 0.9111            | 0.9472           |
| 0.044         | 2.79  | 460  | 0.2046          | 0.8149    | 0.8203 | 0.8175 | 0.6914 | 0.9663   | 0.9007            | 0.9491           |
| 0.0468        | 2.85  | 470  | 0.2036          | 0.8031    | 0.8321 | 0.8174 | 0.6911 | 0.9658   | 0.9057            | 0.9483           |
| 0.0457        | 2.91  | 480  | 0.1998          | 0.7923    | 0.8377 | 0.8144 | 0.6869 | 0.9649   | 0.9077            | 0.9479           |
| 0.0435        | 2.97  | 490  | 0.2077          | 0.7864    | 0.8432 | 0.8138 | 0.6860 | 0.9645   | 0.9100            | 0.9475           |
| 0.0489        | 3.03  | 500  | 0.2067          | 0.7933    | 0.8339 | 0.8131 | 0.6850 | 0.9647   | 0.9059            | 0.9478           |
| 0.0472        | 3.09  | 510  | 0.2204          | 0.7883    | 0.8464 | 0.8163 | 0.6896 | 0.9650   | 0.9117            | 0.9475           |
| 0.0469        | 3.15  | 520  | 0.2209          | 0.7821    | 0.8470 | 0.8132 | 0.6853 | 0.9642   | 0.9115            | 0.9467           |
| 0.0384        | 3.21  | 530  | 0.2147          | 0.7923    | 0.8367 | 0.8139 | 0.6862 | 0.9648   | 0.9072            | 0.9479           |
| 0.0322        | 3.27  | 540  | 0.2215          | 0.7842    | 0.8489 | 0.8153 | 0.6881 | 0.9646   | 0.9126            | 0.9475           |
| 0.0429        | 3.33  | 550  | 0.2184          | 0.7743    | 0.8504 | 0.8106 | 0.6815 | 0.9634   | 0.9127            | 0.9463           |
| 0.0348        | 3.39  | 560  | 0.2293          | 0.7642    | 0.8594 | 0.8090 | 0.6792 | 0.9627   | 0.9163            | 0.9451           |
| 0.0365        | 3.45  | 570  | 0.2221          | 0.7922    | 0.8411 | 0.8159 | 0.6891 | 0.9651   | 0.9094            | 0.9477           |
| 0.0374        | 3.52  | 580  | 0.2175          | 0.7917    | 0.8382 | 0.8143 | 0.6868 | 0.9648   | 0.9079            | 0.9479           |
| 0.0413        | 3.58  | 590  | 0.2111          | 0.8122    | 0.8243 | 0.8182 | 0.6924 | 0.9663   | 0.9025            | 0.9499           |
| 0.0362        | 3.64  | 600  | 0.2183          | 0.7883    | 0.8404 | 0.8135 | 0.6856 | 0.9646   | 0.9088            | 0.9479           |
| 0.0352        | 3.7   | 610  | 0.2124          | 0.8005    | 0.8340 | 0.8169 | 0.6905 | 0.9656   | 0.9065            | 0.9487           |
| 0.0301        | 3.76  | 620  | 0.2145          | 0.7993    | 0.8369 | 0.8177 | 0.6916 | 0.9657   | 0.9078            | 0.9488           |
| 0.0399        | 3.82  | 630  | 0.2188          | 0.8018    | 0.8318 | 0.8166 | 0.6900 | 0.9656   | 0.9055            | 0.9485           |
| 0.0366        | 3.88  | 640  | 0.2211          | 0.7969    | 0.8346 | 0.8153 | 0.6882 | 0.9652   | 0.9066            | 0.9478           |
| 0.0289        | 3.94  | 650  | 0.2201          | 0.7850    | 0.8468 | 0.8147 | 0.6874 | 0.9646   | 0.9116            | 0.9475           |
| 0.0367        | 4.0   | 660  | 0.2280          | 0.7859    | 0.8437 | 0.8138 | 0.6860 | 0.9645   | 0.9102            | 0.9475           |
| 0.0362        | 4.06  | 670  | 0.2226          | 0.7785    | 0.8502 | 0.8128 | 0.6846 | 0.9640   | 0.9128            | 0.9469           |
| 0.0376        | 4.12  | 680  | 0.2213          | 0.8006    | 0.8317 | 0.8159 | 0.6890 | 0.9655   | 0.9054            | 0.9490           |
| 0.0294        | 4.18  | 690  | 0.2212          | 0.8052    | 0.8271 | 0.8160 | 0.6892 | 0.9657   | 0.9034            | 0.9492           |
| 0.0318        | 4.24  | 700  | 0.2254          | 0.7874    | 0.8420 | 0.8138 | 0.6860 | 0.9646   | 0.9095            | 0.9477           |
| 0.0359        | 4.3   | 710  | 0.2250          | 0.7899    | 0.8432 | 0.8157 | 0.6887 | 0.9649   | 0.9102            | 0.9479           |
| 0.034         | 4.36  | 720  | 0.2264          | 0.7985    | 0.8380 | 0.8178 | 0.6917 | 0.9656   | 0.9083            | 0.9489           |
| 0.0334        | 4.42  | 730  | 0.2308          | 0.7871    | 0.8436 | 0.8144 | 0.6869 | 0.9646   | 0.9102            | 0.9475           |
| 0.036         | 4.48  | 740  | 0.2250          | 0.7936    | 0.8404 | 0.8163 | 0.6896 | 0.9652   | 0.9091            | 0.9485           |
| 0.0257        | 4.55  | 750  | 0.2267          | 0.7861    | 0.8456 | 0.8148 | 0.6874 | 0.9646   | 0.9112            | 0.9479           |
| 0.0354        | 4.61  | 760  | 0.2288          | 0.7943    | 0.8401 | 0.8166 | 0.6900 | 0.9653   | 0.9090            | 0.9484           |
| 0.0373        | 4.67  | 770  | 0.2320          | 0.7828    | 0.8471 | 0.8137 | 0.6859 | 0.9643   | 0.9117            | 0.9470           |
| 0.0272        | 4.73  | 780  | 0.2250          | 0.7994    | 0.8354 | 0.8170 | 0.6906 | 0.9656   | 0.9071            | 0.9487           |
| 0.034         | 4.79  | 790  | 0.2339          | 0.7861    | 0.8450 | 0.8145 | 0.6870 | 0.9646   | 0.9108            | 0.9473           |
| 0.0294        | 4.85  | 800  | 0.2262          | 0.7972    | 0.8381 | 0.8171 | 0.6908 | 0.9655   | 0.9082            | 0.9486           |
| 0.0353        | 4.91  | 810  | 0.2337          | 0.7833    | 0.8473 | 0.8140 | 0.6864 | 0.9644   | 0.9118            | 0.9472           |
| 0.0337        | 4.97  | 820  | 0.2273          | 0.7973    | 0.8372 | 0.8168 | 0.6903 | 0.9655   | 0.9078            | 0.9485           |
| 0.0309        | 5.03  | 830  | 0.2318          | 0.7917    | 0.8413 | 0.8157 | 0.6888 | 0.9650   | 0.9094            | 0.9481           |
| 0.026         | 5.09  | 840  | 0.2327          | 0.7932    | 0.8418 | 0.8168 | 0.6903 | 0.9653   | 0.9098            | 0.9483           |
| 0.0271        | 5.15  | 850  | 0.2317          | 0.7887    | 0.8459 | 0.8163 | 0.6896 | 0.9650   | 0.9115            | 0.9479           |
| 0.0352        | 5.21  | 860  | 0.2344          | 0.7914    | 0.8427 | 0.8162 | 0.6895 | 0.9651   | 0.9101            | 0.9481           |
| 0.0268        | 5.27  | 870  | 0.2306          | 0.7931    | 0.8417 | 0.8166 | 0.6901 | 0.9652   | 0.9097            | 0.9484           |
| 0.0248        | 5.33  | 880  | 0.2309          | 0.7889    | 0.8438 | 0.8155 | 0.6884 | 0.9649   | 0.9105            | 0.9480           |
| 0.0331        | 5.39  | 890  | 0.2306          | 0.7895    | 0.8432 | 0.8154 | 0.6884 | 0.9649   | 0.9102            | 0.9480           |
| 0.0265        | 5.45  | 900  | 0.2322          | 0.7944    | 0.8401 | 0.8166 | 0.6901 | 0.9653   | 0.9091            | 0.9484           |
| 0.0352        | 5.52  | 910  | 0.2326          | 0.7922    | 0.8419 | 0.8163 | 0.6896 | 0.9651   | 0.9098            | 0.9482           |
| 0.0368        | 5.58  | 920  | 0.2313          | 0.7911    | 0.8424 | 0.8160 | 0.6891 | 0.9651   | 0.9099            | 0.9481           |
| 0.0315        | 5.64  | 930  | 0.2313          | 0.7917    | 0.8420 | 0.8161 | 0.6893 | 0.9651   | 0.9098            | 0.9482           |
| 0.0251        | 5.7   | 940  | 0.2324          | 0.7919    | 0.8409 | 0.8156 | 0.6887 | 0.9650   | 0.9093            | 0.9481           |
| 0.0331        | 5.76  | 950  | 0.2327          | 0.7913    | 0.8414 | 0.8156 | 0.6886 | 0.9650   | 0.9095            | 0.9481           |
| 0.0361        | 5.82  | 960  | 0.2327          | 0.7904    | 0.8423 | 0.8155 | 0.6885 | 0.9650   | 0.9098            | 0.9480           |
| 0.0362        | 5.88  | 970  | 0.2325          | 0.7909    | 0.8419 | 0.8156 | 0.6887 | 0.9650   | 0.9097            | 0.9481           |
| 0.031         | 5.94  | 980  | 0.2324          | 0.7914    | 0.8418 | 0.8158 | 0.6889 | 0.9650   | 0.9097            | 0.9481           |
| 0.0316        | 6.0   | 990  | 0.2324          | 0.7915    | 0.8418 | 0.8159 | 0.6890 | 0.9651   | 0.9097            | 0.9481           |
| 0.0232        | 6.06  | 1000 | 0.2324          | 0.7915    | 0.8418 | 0.8159 | 0.6890 | 0.9651   | 0.9097            | 0.9481           |


### Framework versions

- Transformers 4.34.1
- Pytorch 2.0.1
- Datasets 2.14.6
- Tokenizers 0.14.1