adriansanz commited on
Commit
7734cbb
·
verified ·
1 Parent(s): 27cc77d

End of training

Browse files
Files changed (1) hide show
  1. README.md +71 -0
README.md ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: projecte-aina/roberta-base-ca-v2
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - precision
9
+ - recall
10
+ - f1
11
+ model-index:
12
+ - name: FS_27_06
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # FS_27_06
20
+
21
+ This model is a fine-tuned version of [projecte-aina/roberta-base-ca-v2](https://huggingface.co/projecte-aina/roberta-base-ca-v2) on the None dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.1516
24
+ - Accuracy: 0.966
25
+ - Precision: 0.9675
26
+ - Recall: 0.966
27
+ - F1: 0.9661
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 5e-05
47
+ - train_batch_size: 8
48
+ - eval_batch_size: 8
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - lr_scheduler_warmup_steps: 500
53
+ - num_epochs: 5
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
58
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
59
+ | 1.7152 | 1.0 | 375 | 1.5745 | 0.94 | 0.9430 | 0.9400 | 0.9403 |
60
+ | 0.2064 | 2.0 | 750 | 0.2286 | 0.964 | 0.9657 | 0.9640 | 0.9643 |
61
+ | 0.1779 | 3.0 | 1125 | 0.1743 | 0.966 | 0.9670 | 0.9660 | 0.9661 |
62
+ | 0.0208 | 4.0 | 1500 | 0.1547 | 0.966 | 0.9672 | 0.9660 | 0.9659 |
63
+ | 0.0166 | 5.0 | 1875 | 0.1516 | 0.966 | 0.9675 | 0.966 | 0.9661 |
64
+
65
+
66
+ ### Framework versions
67
+
68
+ - Transformers 4.41.0
69
+ - Pytorch 2.3.0+cu121
70
+ - Datasets 2.19.1
71
+ - Tokenizers 0.19.1