File size: 31,585 Bytes
0fb95c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
---
base_model: BAAI/bge-m3
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:828
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Comunicació prèvia per l'execució de cales, pous i sondejos, en
    terreny privat, previs a l'actuació definitiva.
  sentences:
  - Quin és el requisit per a l'execució de les obres en terreny privat?
  - Quin és el propòsit del tràmit de rectificació de dades personals?
  - Quin és el requisit per a la crema en zones de conservació?
- source_sentence: En el mateix tràmit també es pot actualitzar el canvi de domicili
    o dades personals, si escau.
  sentences:
  - Quins tributs puc domiciliar amb aquest tràmit?
  - Quin és el compromís del titular de l'activitat en la Declaració responsable?
  - Quin és el tràmit que permet actualitzar les dades personals?
- source_sentence: El reconeixement administratiu del dret comunicat es produeix salvat
    el dret de propietat, sens perjudici del de tercers ni de les competències d’altres
    organismes i administracions.
  sentences:
  - Quin és el tràmit que permet una major transparència en la gestió dels animals
    domèstics?
  - Quin és el requisit per considerar una tala de masses arbòries?
  - Quin és el reconeixement administratiu del dret comunicat?
- source_sentence: El seu objecte és que -prèviament a la seva execució material-
    l'Ajuntament comprovi l'adequació de l’actuació a la normativa i planejament,
    així com a les ordenances municipals.
  sentences:
  - Quin és el resultat de rectificar les meves dades personals?
  - Quin és el paper de les llicències urbanístiques en la instal·lació de construccions
    auxiliars o mòduls prefabricats?
  - Quin és l'objectiu de l'Ajuntament en aquest tràmit?
- source_sentence: 'Permet sol·licitar l’autorització per a l’ús comú especial de
    la via pública per a reserves temporals d’estacionament i espai públic per: càrrega/descàrrega
    de materials diversos davant d''una obra;'
  sentences:
  - Quin és el propòsit de les actuacions de manteniment d'elements de façana i cobertes?
  - Quin és el tràmit per canviar el domicili del permís de conducció i del permís
    de circulació?
  - Quins són els materials que es poden càrregar/descarregar en l'ocupació i reserves
    temporals amb càrrega/descàrrega de materials?
model-index:
- name: SentenceTransformer based on BAAI/bge-m3
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 1024
      type: dim_1024
    metrics:
    - type: cosine_accuracy@1
      value: 0.1956521739130435
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.5434782608695652
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.6739130434782609
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.7717391304347826
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.1956521739130435
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.18115942028985504
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.13478260869565215
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.07717391304347823
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.1956521739130435
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.5434782608695652
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.6739130434782609
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.7717391304347826
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.48504415203944085
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.39229641131815035
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.4002530280745044
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.1956521739130435
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.5543478260869565
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.6739130434782609
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.7717391304347826
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.1956521739130435
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.18478260869565213
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.13478260869565215
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.07717391304347823
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.1956521739130435
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.5543478260869565
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.6739130434782609
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.7717391304347826
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.48804421462232656
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.3962215320910973
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.404212372178018
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.20652173913043478
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.5434782608695652
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.6521739130434783
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.7608695652173914
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.20652173913043478
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.18115942028985504
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.13043478260869562
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.07608695652173911
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.20652173913043478
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.5434782608695652
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.6521739130434783
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.7608695652173914
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.4840641874049137
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.39500086266390616
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.4031258766496075
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.18478260869565216
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.5434782608695652
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.6521739130434783
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.75
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.18478260869565216
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.18115942028985504
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.13043478260869562
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.07499999999999998
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.18478260869565216
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.5434782608695652
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.6521739130434783
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.75
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.4702420475154915
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.3799301242236025
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.38860307402910876
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.22826086956521738
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.5434782608695652
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.6956521739130435
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.782608695652174
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.22826086956521738
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.18115942028985504
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.13913043478260867
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.07826086956521737
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.22826086956521738
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.5434782608695652
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.6956521739130435
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.782608695652174
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.5045819494113778
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.41489820565907526
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.4206777643300118
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.17391304347826086
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.4891304347826087
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.6630434782608695
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.7608695652173914
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.17391304347826086
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.16304347826086954
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1326086956521739
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.07608695652173911
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.17391304347826086
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.4891304347826087
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.6630434782608695
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.7608695652173914
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.4628441336923734
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.36670548654244295
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.37290616382203134
      name: Cosine Map@100
---

# SentenceTransformer based on BAAI/bge-m3

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) <!-- at revision 5617a9f61b028005a4858fdac845db406aefb181 -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 1024 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - json
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("adriansanz/sqv-v3")
# Run inference
sentences = [
    "Permet sol·licitar l’autorització per a l’ús comú especial de la via pública per a reserves temporals d’estacionament i espai públic per: càrrega/descàrrega de materials diversos davant d'una obra;",
    "Quins són els materials que es poden càrregar/descarregar en l'ocupació i reserves temporals amb càrrega/descàrrega de materials?",
    'Quin és el tràmit per canviar el domicili del permís de conducció i del permís de circulació?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `dim_1024`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.1957     |
| cosine_accuracy@3   | 0.5435     |
| cosine_accuracy@5   | 0.6739     |
| cosine_accuracy@10  | 0.7717     |
| cosine_precision@1  | 0.1957     |
| cosine_precision@3  | 0.1812     |
| cosine_precision@5  | 0.1348     |
| cosine_precision@10 | 0.0772     |
| cosine_recall@1     | 0.1957     |
| cosine_recall@3     | 0.5435     |
| cosine_recall@5     | 0.6739     |
| cosine_recall@10    | 0.7717     |
| cosine_ndcg@10      | 0.485      |
| cosine_mrr@10       | 0.3923     |
| **cosine_map@100**  | **0.4003** |

#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.1957     |
| cosine_accuracy@3   | 0.5543     |
| cosine_accuracy@5   | 0.6739     |
| cosine_accuracy@10  | 0.7717     |
| cosine_precision@1  | 0.1957     |
| cosine_precision@3  | 0.1848     |
| cosine_precision@5  | 0.1348     |
| cosine_precision@10 | 0.0772     |
| cosine_recall@1     | 0.1957     |
| cosine_recall@3     | 0.5543     |
| cosine_recall@5     | 0.6739     |
| cosine_recall@10    | 0.7717     |
| cosine_ndcg@10      | 0.488      |
| cosine_mrr@10       | 0.3962     |
| **cosine_map@100**  | **0.4042** |

#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.2065     |
| cosine_accuracy@3   | 0.5435     |
| cosine_accuracy@5   | 0.6522     |
| cosine_accuracy@10  | 0.7609     |
| cosine_precision@1  | 0.2065     |
| cosine_precision@3  | 0.1812     |
| cosine_precision@5  | 0.1304     |
| cosine_precision@10 | 0.0761     |
| cosine_recall@1     | 0.2065     |
| cosine_recall@3     | 0.5435     |
| cosine_recall@5     | 0.6522     |
| cosine_recall@10    | 0.7609     |
| cosine_ndcg@10      | 0.4841     |
| cosine_mrr@10       | 0.395      |
| **cosine_map@100**  | **0.4031** |

#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.1848     |
| cosine_accuracy@3   | 0.5435     |
| cosine_accuracy@5   | 0.6522     |
| cosine_accuracy@10  | 0.75       |
| cosine_precision@1  | 0.1848     |
| cosine_precision@3  | 0.1812     |
| cosine_precision@5  | 0.1304     |
| cosine_precision@10 | 0.075      |
| cosine_recall@1     | 0.1848     |
| cosine_recall@3     | 0.5435     |
| cosine_recall@5     | 0.6522     |
| cosine_recall@10    | 0.75       |
| cosine_ndcg@10      | 0.4702     |
| cosine_mrr@10       | 0.3799     |
| **cosine_map@100**  | **0.3886** |

#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.2283     |
| cosine_accuracy@3   | 0.5435     |
| cosine_accuracy@5   | 0.6957     |
| cosine_accuracy@10  | 0.7826     |
| cosine_precision@1  | 0.2283     |
| cosine_precision@3  | 0.1812     |
| cosine_precision@5  | 0.1391     |
| cosine_precision@10 | 0.0783     |
| cosine_recall@1     | 0.2283     |
| cosine_recall@3     | 0.5435     |
| cosine_recall@5     | 0.6957     |
| cosine_recall@10    | 0.7826     |
| cosine_ndcg@10      | 0.5046     |
| cosine_mrr@10       | 0.4149     |
| **cosine_map@100**  | **0.4207** |

#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.1739     |
| cosine_accuracy@3   | 0.4891     |
| cosine_accuracy@5   | 0.663      |
| cosine_accuracy@10  | 0.7609     |
| cosine_precision@1  | 0.1739     |
| cosine_precision@3  | 0.163      |
| cosine_precision@5  | 0.1326     |
| cosine_precision@10 | 0.0761     |
| cosine_recall@1     | 0.1739     |
| cosine_recall@3     | 0.4891     |
| cosine_recall@5     | 0.663      |
| cosine_recall@10    | 0.7609     |
| cosine_ndcg@10      | 0.4628     |
| cosine_mrr@10       | 0.3667     |
| **cosine_map@100**  | **0.3729** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### json

* Dataset: json
* Size: 828 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 828 samples:
  |         | positive                                                                           | anchor                                                                            |
  |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                            |
  | details | <ul><li>min: 5 tokens</li><li>mean: 41.95 tokens</li><li>max: 117 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 20.81 tokens</li><li>max: 50 tokens</li></ul> |
* Samples:
  | positive                                                                                                                                                                                                                                                                                   | anchor                                                                                                                         |
  |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------|
  | <code>Consultar l'estat tributari d'un contribuent. Us permet consultar l'estat dels rebuts i liquidacions que estan a nom del contribuent titular d'un certificat electrònic, així com els elements que configuren el càlcul per determinar el deute tributari de cadascun d'ells.</code> | <code>Com puc consultar l'estat tributari d'un contribuent?</code>                                                             |
  | <code>L'informe facultatiu servirà per tramitar una autorització de residència temporal per arrelament social.</code>                                                                                                                                                                      | <code>Quin és el tràmit relacionat amb la residència a l'Ajuntament?</code>                                                    |
  | <code>Aquesta targeta, és el document que dona dret a persones físiques o jurídiques titulars de vehicles adaptats destinats al transport col·lectiu de persones amb discapacitat...</code>                                                                                                | <code>Quin és el benefici de tenir la targeta d'aparcament de transport col·lectiu per a les persones amb discapacitat?</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          1024,
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 5
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.2
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.2
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch   | Step   | Training Loss | dim_1024_cosine_map@100 | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|:-------:|:------:|:-------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
| 0.9231  | 3      | -             | 0.3914                  | 0.3466                 | 0.3625                 | 0.3778                 | 0.3067                | 0.3810                 |
| 1.8462  | 6      | -             | 0.3835                  | 0.3940                 | 0.3789                 | 0.3857                 | 0.3407                | 0.3808                 |
| 2.7692  | 9      | -             | 0.4028                  | 0.4159                 | 0.3961                 | 0.4098                 | 0.3803                | 0.4029                 |
| 3.0769  | 10     | 3.1546        | -                       | -                      | -                      | -                      | -                     | -                      |
| **4.0** | **13** | **-**         | **0.3992**              | **0.4209**             | **0.3905**             | **0.4121**             | **0.3806**            | **0.4009**             |
| 4.6154  | 15     | -             | 0.4003                  | 0.4207                 | 0.3886                 | 0.4031                 | 0.3729                | 0.4042                 |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.35.0.dev0
- Datasets: 3.0.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->