Delete modelling_variable.py
Browse files- modelling_variable.py +0 -425
modelling_variable.py
DELETED
@@ -1,425 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
from typing import Any, Optional, Tuple, Union
|
3 |
-
|
4 |
-
import torch
|
5 |
-
import transformers
|
6 |
-
from torch.nn import CrossEntropyLoss
|
7 |
-
from transformers import PreTrainedTokenizerFast, VisionEncoderDecoderModel
|
8 |
-
from transformers.configuration_utils import PretrainedConfig
|
9 |
-
from transformers.modeling_outputs import BaseModelOutput, Seq2SeqLMOutput
|
10 |
-
from transformers.modeling_utils import PreTrainedModel
|
11 |
-
from transformers.models.vision_encoder_decoder.configuration_vision_encoder_decoder import \
|
12 |
-
VisionEncoderDecoderConfig
|
13 |
-
from transformers.utils import logging
|
14 |
-
|
15 |
-
logger = logging.get_logger(__name__)
|
16 |
-
|
17 |
-
|
18 |
-
class CvtWithProjectionHeadConfig(transformers.CvtConfig):
|
19 |
-
def __init__(self, projection_size: int = None, **kwargs: Any) -> None:
|
20 |
-
super().__init__(**kwargs)
|
21 |
-
self.projection_size = projection_size
|
22 |
-
|
23 |
-
|
24 |
-
class ModelOutputWithProjectionEmbedding(transformers.modeling_outputs.ModelOutput):
|
25 |
-
last_hidden_state: torch.FloatTensor
|
26 |
-
attention_mask: torch.FloatTensor
|
27 |
-
|
28 |
-
|
29 |
-
class CvtProjectionHead(torch.nn.Module):
|
30 |
-
|
31 |
-
def __init__(self, config) -> None:
|
32 |
-
super().__init__()
|
33 |
-
|
34 |
-
# https://github.com/huggingface/transformers/blob/68287689f2f0d8b7063c400230b3766987abf18d/src/transformers/models/cvt/modeling_cvt.py#L657
|
35 |
-
self.layer_norm = torch.nn.LayerNorm(config.embed_dim[-1], eps=config.layer_norm_eps)
|
36 |
-
|
37 |
-
# No bias as following layer normalisation with bias:
|
38 |
-
self.projection = torch.nn.Linear(config.embed_dim[-1], config.projection_size, bias=False)
|
39 |
-
|
40 |
-
|
41 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
42 |
-
x = self.layer_norm(x)
|
43 |
-
x = self.projection(x)
|
44 |
-
return x
|
45 |
-
|
46 |
-
|
47 |
-
class VariableCvtWithProjectionHead(transformers.CvtPreTrainedModel):
|
48 |
-
def __init__(self, config):
|
49 |
-
super().__init__(config)
|
50 |
-
|
51 |
-
self.cvt = transformers.CvtModel(config, add_pooling_layer=False)
|
52 |
-
self.projection_head = CvtProjectionHead(config)
|
53 |
-
|
54 |
-
# Initialize weights and apply final processing:
|
55 |
-
self.post_init()
|
56 |
-
|
57 |
-
def forward(
|
58 |
-
self,
|
59 |
-
pixel_values: Optional[torch.Tensor] = None,
|
60 |
-
output_hidden_states: Optional[bool] = None,
|
61 |
-
return_dict: Optional[bool] = None,
|
62 |
-
) -> Union[Tuple, ModelOutputWithProjectionEmbedding]:
|
63 |
-
|
64 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
65 |
-
|
66 |
-
# Flatten the batch and study_id dimensions:
|
67 |
-
outputs = self.cvt(
|
68 |
-
pixel_values.view(-1, *pixel_values.shape[2:]),
|
69 |
-
output_hidden_states=output_hidden_states,
|
70 |
-
return_dict=return_dict,
|
71 |
-
)
|
72 |
-
|
73 |
-
# Flatten h x w:
|
74 |
-
last_hidden_state = torch.flatten(outputs.last_hidden_state, 2)
|
75 |
-
|
76 |
-
# Project the features for each spatial position to the decoder's hidden size:
|
77 |
-
projection = self.projection_head(torch.permute(last_hidden_state, [0, 2, 1]))
|
78 |
-
|
79 |
-
# Concatenate the features for each chest X-ray:
|
80 |
-
projection = projection.view(pixel_values.shape[0], -1, projection.shape[-1])
|
81 |
-
|
82 |
-
# Derive the attention mask from the pixel values:
|
83 |
-
attention_mask = (pixel_values[:, :, 0, 0, 0] != 0.0).repeat_interleave(last_hidden_state.shape[-1], dim=1)
|
84 |
-
|
85 |
-
if not return_dict:
|
86 |
-
return projection
|
87 |
-
|
88 |
-
return ModelOutputWithProjectionEmbedding(
|
89 |
-
last_hidden_state=projection, attention_mask=attention_mask,
|
90 |
-
)
|
91 |
-
|
92 |
-
|
93 |
-
class VariableCXREncoderDecoderModel(VisionEncoderDecoderModel):
|
94 |
-
|
95 |
-
config_class = VisionEncoderDecoderConfig
|
96 |
-
base_model_prefix = "vision_encoder_decoder"
|
97 |
-
main_input_name = "pixel_values"
|
98 |
-
supports_gradient_checkpointing = True
|
99 |
-
|
100 |
-
def __init__(
|
101 |
-
self,
|
102 |
-
config: Optional[PretrainedConfig] = None,
|
103 |
-
encoder: Optional[PreTrainedModel] = None,
|
104 |
-
decoder: Optional[PreTrainedModel] = None,
|
105 |
-
):
|
106 |
-
|
107 |
-
if decoder:
|
108 |
-
assert decoder.config.add_cross_attention, '"add_cross_attention" must be True for the given decoder'
|
109 |
-
assert decoder.config.is_decoder, '"is_decoder" must be True for the given decoder'
|
110 |
-
|
111 |
-
if config is None and (encoder is None or decoder is None):
|
112 |
-
raise ValueError("Either a configuration or an encoder and a decoder has to be provided.")
|
113 |
-
if config is None:
|
114 |
-
config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config)
|
115 |
-
else:
|
116 |
-
if not isinstance(config, self.config_class):
|
117 |
-
raise ValueError(f"Config: {config} has to be of type {self.config_class}")
|
118 |
-
|
119 |
-
config.tie_word_embeddings = False
|
120 |
-
|
121 |
-
# initialize with config
|
122 |
-
PreTrainedModel.__init__(self, config)
|
123 |
-
|
124 |
-
# Encoder:
|
125 |
-
if encoder is None:
|
126 |
-
encoder = VariableCvtWithProjectionHead(config=config.encoder)
|
127 |
-
|
128 |
-
# Decoder:
|
129 |
-
if decoder is None:
|
130 |
-
decoder = transformers.BertLMHeadModel(config=config.decoder)
|
131 |
-
|
132 |
-
self.encoder = encoder
|
133 |
-
self.decoder = decoder
|
134 |
-
|
135 |
-
if self.encoder.config.to_dict() != self.config.encoder.to_dict():
|
136 |
-
logger.warning(
|
137 |
-
f"Config of the encoder: {self.encoder.__class__} is overwritten by shared encoder config:"
|
138 |
-
f" {self.config.encoder}"
|
139 |
-
)
|
140 |
-
if self.decoder.config.to_dict() != self.config.decoder.to_dict():
|
141 |
-
logger.warning(
|
142 |
-
f"Config of the decoder: {self.decoder.__class__} is overwritten by shared decoder config:"
|
143 |
-
f" {self.config.decoder}"
|
144 |
-
)
|
145 |
-
|
146 |
-
self.encoder.config = self.config.encoder
|
147 |
-
self.decoder.config = self.config.decoder
|
148 |
-
|
149 |
-
# config.add_cross_attention = True
|
150 |
-
# config.is_decoder = True
|
151 |
-
|
152 |
-
def forward(
|
153 |
-
self,
|
154 |
-
pixel_values: Optional[torch.FloatTensor] = None,
|
155 |
-
decoder_input_ids: Optional[torch.LongTensor] = None,
|
156 |
-
decoder_attention_mask: Optional[torch.BoolTensor] = None,
|
157 |
-
encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None,
|
158 |
-
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
159 |
-
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
|
160 |
-
labels: Optional[torch.LongTensor] = None,
|
161 |
-
use_cache: Optional[bool] = None,
|
162 |
-
output_attentions: Optional[bool] = None,
|
163 |
-
output_hidden_states: Optional[bool] = None,
|
164 |
-
return_dict: Optional[bool] = None,
|
165 |
-
**kwargs,
|
166 |
-
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
|
167 |
-
|
168 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
169 |
-
|
170 |
-
kwargs_encoder = {argument: value for argument, value in kwargs.items() if not argument.startswith("decoder_")}
|
171 |
-
|
172 |
-
kwargs_decoder = {
|
173 |
-
argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
|
174 |
-
}
|
175 |
-
|
176 |
-
if encoder_outputs is None:
|
177 |
-
if pixel_values is None:
|
178 |
-
raise ValueError("You have to specify pixel_values")
|
179 |
-
|
180 |
-
encoder_outputs = self.encoder(
|
181 |
-
pixel_values,
|
182 |
-
output_hidden_states=output_hidden_states,
|
183 |
-
return_dict=return_dict,
|
184 |
-
**kwargs_encoder,
|
185 |
-
) # CvT does not support output_attentions.
|
186 |
-
|
187 |
-
elif isinstance(encoder_outputs, tuple):
|
188 |
-
encoder_outputs = BaseModelOutput(*encoder_outputs)
|
189 |
-
|
190 |
-
encoder_hidden_states = encoder_outputs[0]
|
191 |
-
|
192 |
-
decoder_outputs = self.decoder(
|
193 |
-
input_ids=decoder_input_ids,
|
194 |
-
attention_mask=decoder_attention_mask,
|
195 |
-
encoder_hidden_states=encoder_hidden_states,
|
196 |
-
encoder_attention_mask=encoder_outputs.attention_mask,
|
197 |
-
inputs_embeds=decoder_inputs_embeds,
|
198 |
-
output_attentions=output_attentions,
|
199 |
-
output_hidden_states=output_hidden_states,
|
200 |
-
use_cache=use_cache,
|
201 |
-
past_key_values=past_key_values,
|
202 |
-
return_dict=return_dict,
|
203 |
-
**kwargs_decoder,
|
204 |
-
)
|
205 |
-
|
206 |
-
# Loss:
|
207 |
-
loss = None
|
208 |
-
if labels is not None:
|
209 |
-
logits = decoder_outputs.logits if return_dict else decoder_outputs[0]
|
210 |
-
loss_fct = CrossEntropyLoss()
|
211 |
-
loss = loss_fct(logits.reshape(-1, self.decoder.config.vocab_size), labels.reshape(-1))
|
212 |
-
|
213 |
-
if not return_dict:
|
214 |
-
if loss is not None:
|
215 |
-
return (loss,) + decoder_outputs + encoder_outputs
|
216 |
-
else:
|
217 |
-
return decoder_outputs + encoder_outputs
|
218 |
-
|
219 |
-
return Seq2SeqLMOutput(
|
220 |
-
loss=loss,
|
221 |
-
logits=decoder_outputs.logits,
|
222 |
-
past_key_values=decoder_outputs.past_key_values,
|
223 |
-
decoder_hidden_states=decoder_outputs.hidden_states,
|
224 |
-
decoder_attentions=decoder_outputs.attentions,
|
225 |
-
cross_attentions=decoder_outputs.cross_attentions,
|
226 |
-
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
227 |
-
# encoder_hidden_states=encoder_outputs.hidden_states,
|
228 |
-
# encoder_attentions=encoder_outputs.attentions,
|
229 |
-
)
|
230 |
-
|
231 |
-
def prepare_inputs_for_generation(
|
232 |
-
self,
|
233 |
-
input_ids,
|
234 |
-
special_token_ids,
|
235 |
-
past_key_values=None,
|
236 |
-
attention_mask=None,
|
237 |
-
use_cache=None,
|
238 |
-
encoder_outputs=None,
|
239 |
-
**kwargs,
|
240 |
-
):
|
241 |
-
"""
|
242 |
-
Modification of:
|
243 |
-
https://github.com/huggingface/transformers/blob/main/src/transformers/models/encoder_decoder/modeling_encoder_decoder.py#L660
|
244 |
-
"""
|
245 |
-
|
246 |
-
decoder_inputs = self.decoder.prepare_inputs_for_generation(input_ids, past_key_values=past_key_values)
|
247 |
-
decoder_attention_mask = decoder_inputs['attention_mask'] if 'attention_mask' in decoder_inputs else None
|
248 |
-
|
249 |
-
if not past_key_values:
|
250 |
-
token_type_ids = self.token_ids_to_token_type_ids(input_ids, special_token_ids)
|
251 |
-
else:
|
252 |
-
token_type_ids = self.token_ids_to_token_type_ids_past(input_ids, special_token_ids)
|
253 |
-
|
254 |
-
input_dict = {
|
255 |
-
'attention_mask': attention_mask,
|
256 |
-
'decoder_attention_mask': decoder_attention_mask,
|
257 |
-
'decoder_input_ids': decoder_inputs['input_ids'],
|
258 |
-
'decoder_token_type_ids': token_type_ids,
|
259 |
-
'encoder_outputs': encoder_outputs,
|
260 |
-
'past_key_values': decoder_inputs['past_key_values'],
|
261 |
-
'use_cache': use_cache,
|
262 |
-
}
|
263 |
-
return input_dict
|
264 |
-
|
265 |
-
def token_ids_to_token_type_ids(self, token_ids, special_token_ids, token_type_id_sections=None):
|
266 |
-
"""
|
267 |
-
Extract token type identifiers from the token identifiers.
|
268 |
-
|
269 |
-
Argument/s:
|
270 |
-
token_ids - token identifiers.
|
271 |
-
special_token_ids - special token identifiers that indicate the separation between sections.
|
272 |
-
token_type_id_section - token type identifier for each section.
|
273 |
-
|
274 |
-
Returns:
|
275 |
-
token_type_ids - token type identifiers.
|
276 |
-
"""
|
277 |
-
|
278 |
-
token_type_id_sections = token_type_id_sections if token_type_id_sections is not None else list(range(len(special_token_ids) + 1))
|
279 |
-
|
280 |
-
mbatch_size, seq_len = token_ids.shape
|
281 |
-
token_type_ids = torch.full_like(token_ids, token_type_id_sections[0], dtype=torch.long, device=token_ids.device)
|
282 |
-
|
283 |
-
for i, j in enumerate(special_token_ids):
|
284 |
-
# Find first occurrence of special tokens that indicate the boundary between sections:
|
285 |
-
cols = (token_ids == j).int().argmax(dim=1)
|
286 |
-
rows = torch.arange(mbatch_size, device=token_ids.device)
|
287 |
-
|
288 |
-
# https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertTokenizer.create_token_type_ids_from_sequences.example
|
289 |
-
cols += 1
|
290 |
-
|
291 |
-
# Ensure that the column index is not out of bounds. If 0, then token_id not present.
|
292 |
-
# This is safe as index 0 is always a special token (now equal to 1 due to +1):
|
293 |
-
rows = rows[torch.logical_and(cols != 1, cols < seq_len)]
|
294 |
-
cols = cols[torch.logical_and(cols != 1, cols < seq_len)]
|
295 |
-
|
296 |
-
# Indices to that correspond to the second sequence:
|
297 |
-
if rows.nelement() != 0:
|
298 |
-
ids = torch.stack([
|
299 |
-
torch.stack([x, z]) for (x, y) in zip(rows, cols) for z in torch.arange(
|
300 |
-
y, seq_len, device=token_ids.device,
|
301 |
-
)
|
302 |
-
])
|
303 |
-
|
304 |
-
token_type_ids[ids[:, 0], ids[:, 1]] = token_type_id_sections[i + 1]
|
305 |
-
|
306 |
-
return token_type_ids
|
307 |
-
|
308 |
-
def token_ids_to_token_type_ids_past(self, token_ids, special_token_ids, token_type_id_sections=None):
|
309 |
-
"""
|
310 |
-
Extract token type identifiers from the token identifiers if past != None.
|
311 |
-
|
312 |
-
Argument/s:
|
313 |
-
token_ids - token identifiers.
|
314 |
-
special_token_ids - special token identifiers that indicate the separation between sections.
|
315 |
-
|
316 |
-
Returns:
|
317 |
-
token_type_ids - token type identifiers.
|
318 |
-
"""
|
319 |
-
|
320 |
-
token_type_id_sections = token_type_id_sections if token_type_id_sections is not None else list(range(len(special_token_ids) + 1))
|
321 |
-
token_type_ids = torch.full([token_ids.shape[0], 1], token_type_id_sections[0], dtype=torch.long, device=token_ids.device)
|
322 |
-
|
323 |
-
# https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertTokenizer.create_token_type_ids_from_sequences.example
|
324 |
-
token_ids = token_ids[:, :-1]
|
325 |
-
|
326 |
-
for i, j in enumerate(special_token_ids):
|
327 |
-
|
328 |
-
# Find first occurrence of special token, which indicates the boundary between sections:
|
329 |
-
exists = torch.any(token_ids == j, dim=1, keepdim=True)
|
330 |
-
token_type_ids[exists] = token_type_id_sections[i + 1]
|
331 |
-
|
332 |
-
return token_type_ids
|
333 |
-
|
334 |
-
def tokenize_report_teacher_forcing(self, findings: str, impression: str, tokenizer: PreTrainedTokenizerFast, max_len: int):
|
335 |
-
"""
|
336 |
-
Tokenize the reports and creates the inputs and targets for teacher forcing.
|
337 |
-
|
338 |
-
Argument/s:
|
339 |
-
findings - findings section.
|
340 |
-
impression - impression section.
|
341 |
-
return_token_type_ids - return the token type identifiers.
|
342 |
-
tokenizer - Hugging Face tokenizer.
|
343 |
-
max_len - maximum number of tokens.
|
344 |
-
|
345 |
-
Returns:
|
346 |
-
decoder_input_ids - the token identifiers for the input of the decoder.
|
347 |
-
decoder_attention_mask - the attention mask for the decoder_input_ids.
|
348 |
-
label_ids - the label token identifiers for the decoder.
|
349 |
-
"""
|
350 |
-
|
351 |
-
# Prepare the sections for the tokenizer by placing special tokens between each section:
|
352 |
-
report = [f'{tokenizer.bos_token}{i}{tokenizer.sep_token}{j}{tokenizer.eos_token}' for i, j in
|
353 |
-
zip(findings, impression)]
|
354 |
-
|
355 |
-
# Tokenize the report:
|
356 |
-
tokenized = tokenizer(
|
357 |
-
report,
|
358 |
-
padding='longest',
|
359 |
-
truncation=True,
|
360 |
-
max_length=max_len + 1, # +1 to account for the bias between input and target.
|
361 |
-
return_tensors='pt',
|
362 |
-
return_token_type_ids=False,
|
363 |
-
add_special_tokens=False,
|
364 |
-
).to(self.device)
|
365 |
-
|
366 |
-
# Modify for language modelling:
|
367 |
-
batch_dict = {
|
368 |
-
|
369 |
-
# Labels for the decoder (shifted right by one for autoregression):
|
370 |
-
'label_ids': tokenized['input_ids'][:, 1:].detach().clone(),
|
371 |
-
|
372 |
-
# Remove last token identifier to match the sequence length of the labels:
|
373 |
-
'decoder_input_ids': tokenized['input_ids'][:, :-1],
|
374 |
-
|
375 |
-
# Attention mask for the decoder_input_ids (remove first token so that the eos_token_id is not considered):
|
376 |
-
'decoder_attention_mask': tokenized['attention_mask'][:, 1:],
|
377 |
-
}
|
378 |
-
|
379 |
-
return batch_dict
|
380 |
-
|
381 |
-
def split_and_decode_sections(self, token_ids, special_token_ids, tokenizer: PreTrainedTokenizerFast):
|
382 |
-
"""
|
383 |
-
Split the token identifiers into sections, then convert the token identifiers into strings.
|
384 |
-
|
385 |
-
Argument/s:
|
386 |
-
token_ids - token identifiers.
|
387 |
-
special_token_ids - special token identifiers that indicate the end of each section.
|
388 |
-
tokenizer - Hugging Face tokenizer.
|
389 |
-
|
390 |
-
Returns:
|
391 |
-
token_type_ids - token type identifiers.
|
392 |
-
"""
|
393 |
-
|
394 |
-
_, seq_len = token_ids.shape
|
395 |
-
|
396 |
-
# The number of sections is the same as the number of special_token_ids:
|
397 |
-
num_sections = len(special_token_ids)
|
398 |
-
|
399 |
-
sections = {k: [] for k in range(num_sections)}
|
400 |
-
|
401 |
-
for i in token_ids:
|
402 |
-
prev_col = 0
|
403 |
-
for j, k in enumerate(special_token_ids):
|
404 |
-
|
405 |
-
# The maximum sequence length was exceeded, thus no more tokens:
|
406 |
-
if prev_col >= seq_len:
|
407 |
-
sections[j].append('')
|
408 |
-
continue
|
409 |
-
|
410 |
-
# Find first occurrence of special tokens that indicate the boundary between sections:
|
411 |
-
col = (i == k).int().argmax().item()
|
412 |
-
|
413 |
-
# If equal to 0, token was not found, set the column to the sequence length (as the decoder exceeded
|
414 |
-
# the maximum sequence length):
|
415 |
-
if col == 0:
|
416 |
-
col = seq_len
|
417 |
-
|
418 |
-
# Extract section token identifiers:
|
419 |
-
section_token_ids = i[prev_col:col]
|
420 |
-
prev_col = col
|
421 |
-
section_string = tokenizer.decode(section_token_ids, skip_special_tokens=True)
|
422 |
-
|
423 |
-
sections[j].append(section_string)
|
424 |
-
|
425 |
-
return tuple(sections.values())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|