ppo-LunarLander-v2 / config.json
afedyanin's picture
Upload PPO LunarLander-v2 trained agent
a5daf69 verified
raw
history blame
13.7 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e92b61b2200>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e92b61b2290>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e92b61b2320>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e92b61b23b0>", "_build": "<function ActorCriticPolicy._build at 0x7e92b61b2440>", "forward": "<function ActorCriticPolicy.forward at 0x7e92b61b24d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e92b61b2560>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e92b61b25f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7e92b61b2680>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e92b61b2710>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e92b61b27a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e92b61b2830>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e92b615a440>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1728838927919478707, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKvLhb56Fx29cEV5vvRoLr28toM+swRAPQAAgD8AAIA/ze6uvMP5ArrOH7Y7sT6TuEGvwzop8pC3AACAPwAAgD8a0E29p3LuPiS4vT3TEPy+y90BvSsI2T0AAAAAAAAAAE2lYT2MzDc+7ncLvZetk74rZqM9kEXQvAAAAAAAAAAAmgXAu0gbn7p2JP20Ef0irZgvyLq1+GM0AACAPwAAgD/mvoE9lZQePgJDu73W0o++S2kevWysO70AAAAAAAAAAIDEQT2D/gM/icc7PdN4wr5Igxc9wB/CvQAAAAAAAAAACrOLPt2VjT+Ot5I+3cYrv78Bjz42FZs9AAAAAAAAAAAN26y9gmmWPmLOMj5Zqr++bntYvfpeoD0AAAAAAAAAAM0bVb1bE7E9jm0ePi4gnL7flh49v75IPQAAAAAAAAAAfWuMPhxSAD9/E5K+FuLFvnMYBj7QyDC+AAAAAAAAAACAmlg9/5PMPpuzaj2Vhby+oiuVPS59GD0AAAAAAAAAAABz3D0cYCo/hoYRPjOXDb/0Aww+DoW8PQAAAAAAAAAABt4fPgadnT8o6pE+kVsyv3vAiz0olTw+AAAAAAAAAACzmue9fHmcPzsqDL9pLy6/KhgwvnR2qr4AAAAAAAAAAGZesD0FZfa7Fv3bPZNCljzdYkC9laR7PQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV7AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHC9mvwEyL2MAWyUS8mMAXSUR0CTnNcGTs6adX2UKGgGR0BxaG48U21laAdL7GgIR0CTnZm65Gz9dX2UKGgGR0By7Vzo2XLNaAdL2mgIR0CTnbV8CxNZdX2UKGgGR0BvNq508vEkaAdLxWgIR0CTntMs6JZXdX2UKGgGR0BxP1/Ue+23aAdL92gIR0CTn0B2OhkBdX2UKGgGR0BtQ5y2hIvraAdL5mgIR0CTn3PEbYK6dX2UKGgGR0BxVR3eN1hcaAdL8mgIR0CTn4ozeoDQdX2UKGgGR0BynwJVsDW9aAdL4GgIR0CToAotL+PzdX2UKGgGR0BzVkTRIBikaAdNEQFoCEdAk6Ey3LFGX3V9lChoBkdAcqh2606YFGgHS+poCEdAk6FYU34sVnV9lChoBkdAcaJNlAeJYWgHTSgBaAhHQJOiTs1KoQ51fZQoaAZHQHOr7JW/8EVoB0vTaAhHQJOiaUdJaq11fZQoaAZHQG4sTm4iHIpoB0vSaAhHQJOjGPGQ0XR1fZQoaAZHQHNPQSrYGt9oB0vQaAhHQJOjH8DSw4d1fZQoaAZHQHNTG4RVZLZoB00HAWgIR0CTo6jaPCEYdX2UKGgGR0ByEoQcxTKlaAdL12gIR0CTo+3evZAZdX2UKGgGR0BvmyzHCGeuaAdL3mgIR0CTpDEKE385dX2UKGgGR0ByHZhLGrCFaAdLuWgIR0CTpI7vXsgMdX2UKGgGR0By2L4h2W6caAdL4GgIR0CTpQ15jYqYdX2UKGgGR0BxZboV2zOYaAdLy2gIR0CTpQusLfDUdX2UKGgGR0BweGcwxnFpaAdL0mgIR0CTpY6cRUWEdX2UKGgGR0BwOe4H5aePaAdNAgFoCEdAk6Ycpb2US3V9lChoBkdAch+aQmu1W2gHS8doCEdAk6Y1FDv3J3V9lChoBkdActr3Sa3I/GgHS9VoCEdAk6ZuGoJiRXV9lChoBkdAbwh3cpLEk2gHS9BoCEdAk6dw6ltTDXV9lChoBkdAcxNsi0OVgWgHS91oCEdAk6enrY5DJHV9lChoBkdAcP9CL/CIlGgHS+BoCEdAk7m55qubJHV9lChoBkdAcQ4VKf4AS2gHS8ZoCEdAk7nfHDJlrnV9lChoBkdAcgyIPbwjMWgHS9NoCEdAk7nsaXKKYXV9lChoBkdAc3VdK/VRUGgHTdYBaAhHQJO6dQ2uPmx1fZQoaAZHQHMTnHzYmLNoB00DAWgIR0CTuoXS0BwNdX2UKGgGR0ByAwy/KyOaaAdL3mgIR0CTuxKk2xY8dX2UKGgGR0ByLEouwosqaAdL72gIR0CTuxyJbdJrdX2UKGgGR0ByvT668QI2aAdL1GgIR0CTu1DZDiOvdX2UKGgGR0Bw1Gkxh2GJaAdL1GgIR0CTu8ySFGoadX2UKGgGR0BzGe5BkZrIaAdL9GgIR0CTvANgSeyzdX2UKGgGR0BwiZ+CsfaIaAdLzmgIR0CTvDY9xIatdX2UKGgGR0BysiRwIdELaAdLymgIR0CTvDRYzSCwdX2UKGgGR0BzBs5BC2MLaAdL02gIR0CTvcD5j6N3dX2UKGgGR0BxvwhzNliCaAdNFQFoCEdAk74aoESuhnV9lChoBkdAcbYQfZElV2gHS8RoCEdAk75mTLW7OHV9lChoBkdAcMiDKHO8kGgHS9NoCEdAk76ccU/OdHV9lChoBkdAck6Qm/nGKmgHTQcBaAhHQJO+zSXt0FN1fZQoaAZHQHOs8jVx0dRoB0vwaAhHQJO/fhIe5nV1fZQoaAZHQHHjXH/95yFoB0vdaAhHQJO/qPeYUnJ1fZQoaAZHQG/e1RDTjNpoB0vLaAhHQJO/yajN6gN1fZQoaAZHQHE4SQDFId5oB0vsaAhHQJO/8acZtN11fZQoaAZHQHGzy/XXiBJoB0u4aAhHQJPAErnTy8V1fZQoaAZHQHEtGjO9nK5oB0vRaAhHQJPAJEZzgdh1fZQoaAZHQHPL8ox59mZoB0veaAhHQJPAL4etCAt1fZQoaAZHQHLb9qtYB/9oB0vVaAhHQJPA3Ssr/bV1fZQoaAZHQHEQ0U0vXbxoB0vXaAhHQJPBGBkI5YJ1fZQoaAZHQGKGXdKujh1oB03oA2gIR0CTwY987ZFodX2UKGgGR0By3IX/HYHxaAdL8GgIR0CTwaPnSv1UdX2UKGgGR0BxprguRLbpaAdLwWgIR0CTwly2hIvrdX2UKGgGR0Bwut+4LCvYaAdL3WgIR0CTwqxbjcVQdX2UKGgGR0BzKyO6unuRaAdLvWgIR0CTw8+oLofTdX2UKGgGR0BtQOb9ZRsNaAdL6mgIR0CTw9cNpdrwdX2UKGgGR0BvI3A44p+daAdLy2gIR0CTxEiuuA7QdX2UKGgGR0BzOUcfeUILaAdLxmgIR0CTxIgLJCBxdX2UKGgGR0BwiqH1vl2eaAdL4WgIR0CTxITcqOLjdX2UKGgGR0Bvp6dH2AXmaAdNBgFoCEdAk8S0upS75HV9lChoBkdAczqAPd2xIWgHS9JoCEdAk8S/FJg9eXV9lChoBkdAct56w+t8u2gHS89oCEdAk8TKxLTQV3V9lChoBkdAcL5QjD8+A2gHS95oCEdAk8TfeDWbw3V9lChoBkdAcyHBiTdLx2gHTTUBaAhHQJPFRSYPXkJ1fZQoaAZHQHKUB/ZuhsZoB0vVaAhHQJPFidvsJIF1fZQoaAZHQG3L2RaHKwJoB0vLaAhHQJPGB1dPci51fZQoaAZHQHC08WfseGRoB0vOaAhHQJPGA35vcah1fZQoaAZHQHJ/whGH58BoB0u+aAhHQJPGfmNipeh1fZQoaAZHQHPEQH3UQTVoB00HAWgIR0CTxsasp5NXdX2UKGgGR0BzD98WsRxtaAdL1mgIR0CTx130PH1fdX2UKGgGR0BvDa5mRNh3aAdL4GgIR0CTyNCMxXXAdX2UKGgGR0BL2AsCkoF3aAdLkmgIR0CTyOIomXw9dX2UKGgGR0BxWX5ULlV+aAdLxmgIR0CTyOudPLxJdX2UKGgGR0BwvrtPYWcjaAdL2GgIR0CTyRlz2exwdX2UKGgGR0BwcfmKZUkwaAdLzmgIR0CTyRhEjPfLdX2UKGgGR0ByBbpC8e0YaAdL8WgIR0CTyUWj4593dX2UKGgGR0BuUU9lmOENaAdLz2gIR0CTyXatcObzdX2UKGgGR0BxYsi3XqZ/aAdL0mgIR0CTyXQumJm/dX2UKGgGR0Bvc01l5GBnaAdL32gIR0CTygzIV/MGdX2UKGgGR0BwW6AlOXVtaAdL5mgIR0CTyhQbdadMdX2UKGgGR0BxOVy3kPtlaAdLzmgIR0CTyjGnGbTddX2UKGgGR0BwQ4x8D0UXaAdL6GgIR0CTzAoG6f8NdX2UKGgGR0Byvy16Vt4zaAdL8GgIR0CTzEXNke6qdX2UKGgGR0ByOfjHXEqEaAdLwGgIR0CTzK5TIeYEdX2UKGgGR0BxAge9zwMIaAdL3mgIR0CTzMs+FDfFdX2UKGgGR0ByhgPe54GEaAdL7WgIR0CTzOI3R5TqdX2UKGgGR0BzTzgZTAFgaAdLxWgIR0CTzuMpw0fpdX2UKGgGR0BxVktGus90aAdLv2gIR0CTzu3juKGddX2UKGgGR0BxK0Mb3oLYaAdLymgIR0CTzxKtga3rdX2UKGgGR0BxKvW7OE/TaAdL1mgIR0CTzzaK1og3dX2UKGgGR0BzsVyhi9ZiaAdLy2gIR0CTz4YPoV2zdX2UKGgGR0BxqGLXL/0eaAdL42gIR0CTz40SAYpEdX2UKGgGR0Bt+9FDv3JxaAdL8GgIR0CT0A5RTCLudX2UKGgGR0Bu/ACuEEkjaAdL3mgIR0CT0ChP0qYrdX2UKGgGR0ByrAi0OVgQaAdL22gIR0CT0K9zwMH9dX2UKGgGR0Bzp07YChexaAdL4GgIR0CT0NlGwzLwdX2UKGgGR0Bw0c6CDmKZaAdL4WgIR0CT0P0cwQDndX2UKGgGR0BxZbNQj2SMaAdLt2gIR0CT0cp8neBQdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 361, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}