File size: 7,143 Bytes
cb54213
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
---
base_model: nicholasKluge/Aira-2-1B1
co2_eq_emissions:
  emissions: 1.78
  geographical_location: United States of America
  hardware_used: NVIDIA A100-SXM4-40GB
  source: CodeCarbon
  training_type: fine-tuning
datasets:
- nicholasKluge/instruct-aira-dataset
inference: false
language:
- en
library_name: transformers
license: apache-2.0
metrics:
- accuracy
model_creator: nicholasKluge
model_name: Aira-2-1B1
pipeline_tag: text-generation
quantized_by: afrideva
tags:
- alignment
- instruction tuned
- text generation
- conversation
- assistant
- gguf
- ggml
- quantized
- q2_k
- q3_k_m
- q4_k_m
- q5_k_m
- q6_k
- q8_0
widget:
- example_title: Greetings
  text: <|startofinstruction|>How should I call you?<|endofinstruction|>
- example_title: Machine Learning
  text: <|startofinstruction|>Can you explain what is Machine Learning?<|endofinstruction|>
- example_title: Ethics
  text: <|startofinstruction|>Do you know anything about virtue ethics?<|endofinstruction|>
- example_title: Advise
  text: <|startofinstruction|>How can I make my girlfriend happy?<|endofinstruction|>
---
# nicholasKluge/Aira-2-1B1-GGUF

Quantized GGUF model files for [Aira-2-1B1](https://huggingface.co/nicholasKluge/Aira-2-1B1) from [nicholasKluge](https://huggingface.co/nicholasKluge)


| Name | Quant method | Size |
| ---- | ---- | ---- |
| [aira-2-1b1.fp16.gguf](https://huggingface.co/afrideva/Aira-2-1B1-GGUF/resolve/main/aira-2-1b1.fp16.gguf) | fp16 | 2.20 GB  |
| [aira-2-1b1.q2_k.gguf](https://huggingface.co/afrideva/Aira-2-1B1-GGUF/resolve/main/aira-2-1b1.q2_k.gguf) | q2_k | 482.15 MB  |
| [aira-2-1b1.q3_k_m.gguf](https://huggingface.co/afrideva/Aira-2-1B1-GGUF/resolve/main/aira-2-1b1.q3_k_m.gguf) | q3_k_m | 549.86 MB  |
| [aira-2-1b1.q4_k_m.gguf](https://huggingface.co/afrideva/Aira-2-1B1-GGUF/resolve/main/aira-2-1b1.q4_k_m.gguf) | q4_k_m | 667.83 MB  |
| [aira-2-1b1.q5_k_m.gguf](https://huggingface.co/afrideva/Aira-2-1B1-GGUF/resolve/main/aira-2-1b1.q5_k_m.gguf) | q5_k_m | 782.06 MB  |
| [aira-2-1b1.q6_k.gguf](https://huggingface.co/afrideva/Aira-2-1B1-GGUF/resolve/main/aira-2-1b1.q6_k.gguf) | q6_k | 903.43 MB  |
| [aira-2-1b1.q8_0.gguf](https://huggingface.co/afrideva/Aira-2-1B1-GGUF/resolve/main/aira-2-1b1.q8_0.gguf) | q8_0 | 1.17 GB  |



## Original Model Card:
# Aira-2-1B1

`Aira-2` is the second version of the Aira instruction-tuned series. `Aira-2-1B1` is an instruction-tuned GPT-style model based on [TinyLlama-1.1B](https://huggingface.co/PY007/TinyLlama-1.1B-intermediate-step-480k-1T). The model was trained with a dataset composed of prompts and completions generated synthetically by prompting already-tuned models (ChatGPT, Llama, Open-Assistant, etc).

Check our gradio-demo in [Spaces](https://huggingface.co/spaces/nicholasKluge/Aira-Demo).

## Details

- **Size:** 1,261,545,472 parameters
- **Dataset:** [Instruct-Aira Dataset](https://huggingface.co/datasets/nicholasKluge/instruct-aira-dataset)
- **Language:** English
- **Number of Epochs:** 3
- **Batch size:** 4
- **Optimizer:** `torch.optim.AdamW` (warmup_steps = 1e2, learning_rate = 5e-4, epsilon = 1e-8)
- **GPU:** 1 NVIDIA A100-SXM4-40GB
- **Emissions:** 1.78 KgCO2 (Singapore)
- **Total Energy Consumption:** 3.64 kWh

This repository has the [source code](https://github.com/Nkluge-correa/Aira) used to train this model.

## Usage

Three special tokens are used to mark the user side of the interaction and the model's response:

`<|startofinstruction|>`What is a language model?`<|endofinstruction|>`A language model is a probability distribution over a vocabulary.`<|endofcompletion|>`

```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

tokenizer = AutoTokenizer.from_pretrained('nicholasKluge/Aira-2-1B1')
aira = AutoModelForCausalLM.from_pretrained('nicholasKluge/Aira-2-1B1')

aira.eval()
aira.to(device)

question =  input("Enter your question: ")

inputs = tokenizer(tokenizer.bos_token + question + tokenizer.sep_token, return_tensors="pt").to(device)

responses = aira.generate(**inputs,
	bos_token_id=tokenizer.bos_token_id,
	pad_token_id=tokenizer.pad_token_id,
	eos_token_id=tokenizer.eos_token_id,
	do_sample=True,
	top_k=50,
	max_length=500,
	top_p=0.95,
	temperature=0.7,
	num_return_sequences=2)

print(f"Question: 👤 {question}\n")

for i, response in  enumerate(responses):
	print(f'Response {i+1}: 🤖 {tokenizer.decode(response, skip_special_tokens=True).replace(question, "")}')
```

The model will output something like:

```markdown
>>>Question: 👤 What is the capital of Brazil?

>>>Response 1: 🤖 The capital of Brazil is Brasília.
>>>Response 2: 🤖 The capital of Brazil is Brasília.
```

## Limitations

🤥 Generative models can perpetuate the generation of pseudo-informative content, that is, false information that may appear truthful.

🤬 In certain types of tasks, generative models can produce harmful and discriminatory content inspired by historical stereotypes.

## Evaluation

| Model (TinyLlama)                                             | Average   | [ARC](https://arxiv.org/abs/1803.05457) | [TruthfulQA](https://arxiv.org/abs/2109.07958) | [ToxiGen](https://arxiv.org/abs/2203.09509) |
|---------------------------------------------------------------|-----------|-----------------------------------------|------------------------------------------------|---------------------------------------------|
| [Aira-2-1B1](https://huggingface.co/nicholasKluge/Aira-2-1B1) | **42.55** | 25.26                                   | **50.81**                                      | **51.59**                                   |
| TinyLlama-1.1B-intermediate-step-480k-1T                      | 37.52     | **30.89**                               | 39.55                                          | 42.13                                       |


* Evaluations were performed using the [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) (by [EleutherAI](https://www.eleuther.ai/)).

## Cite as 🤗

```latex

@misc{nicholas22aira,
  doi = {10.5281/zenodo.6989727},
  url = {https://huggingface.co/nicholasKluge/Aira-2-1B1},
  author = {Nicholas Kluge Corrêa},
  title = {Aira},
  year = {2023},
  publisher = {HuggingFace},
  journal = {HuggingFace repository},
}

```

## License

The `Aira-2-1B1` is licensed under the Apache License, Version 2.0. See the [LICENSE](LICENSE) file for more details.

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_nicholasKluge__Aira-2-1B1)

| Metric                | Value                     |
|-----------------------|---------------------------|
| Avg.                  | 25.19   |
| ARC (25-shot)         | 23.21          |
| HellaSwag (10-shot)   | 26.97    |
| MMLU (5-shot)         | 24.86         |
| TruthfulQA (0-shot)   | 50.63   |
| Winogrande (5-shot)   | 50.28   |
| GSM8K (5-shot)        | 0.0        |
| DROP (3-shot)         | 0.39         |