ppo-LunarLander-v2 / config.json
aga3134's picture
Upload PPO LunarLander-v2 trained agent
5b36477
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff0a06e89d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff0a06e8a60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff0a06e8af0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff0a06e8b80>", "_build": "<function ActorCriticPolicy._build at 0x7ff0a06e8c10>", "forward": "<function ActorCriticPolicy.forward at 0x7ff0a06e8ca0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff0a06e8d30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff0a06e8dc0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff0a06e8e50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff0a06e8ee0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff0a06e8f70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff0a06e9000>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ff0a06dae80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686906188116021933, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGalqT1sCJ67FPjCPI+XpDyiVts8kVOLvQAAgD8AAIA/ZkQjvMOpWLoloe+61p0UtpyT4DrkfAw6AACAPwAAgD8AbKg9FECIuohn1LrRnfm1L9gDupgc9zkAAIA/AACAP82cJrxcRw26Zem8ury1w7WcJCE7q7LhOQAAgD8AAIA/mgtZvcOBNbo23zY7jYEqNmIjMjpOIFO6AACAPwAAgD8AYGe6FEygukl6HrlRXzW00j3uOa0kNjgAAIA/AACAP21qGz7PQRC8zJkCPCt6Orr54Wq9zpMbuwAAAAAAAIA/Zme1PEjhlzdCoQO6nnsTNlJIAzzI/iE5AACAPwAAgD/NY1+99nwRumsE7bcDnQGz6Nxbug5VCDcAAIA/AACAP2a4MTxIfYK6DyKWOtCwWDa86Ai7y7tUNQAAgD8AAIA/OolyvgbePj+QzM+9r9y9vlY9P769NtA9AAAAAAAAAABmvik94SyjuoY3OTtEvZU24GK0uKL7VLoAAIA/AACAP1owlb2vf0c+Vsx3PuExJb7W03k9k+p8PQAAAAAAAAAA4Ix6PpV8vD4gxFC+j6LBvt+vh7tNsu+8AAAAAAAAAAAzP807iE0NP8WMnL00x7C+PW+2PFr0dTsAAAAAAAAAAACIDDxIb6W6eM8BuML9/rJ0sA+58qcUNwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGJHzNt65XmMAWyUTegDjAF0lEdAkxXv2K2rn3V9lChoBkdAMNYv38GcF2gHS/VoCEdAkxbmM85jpnV9lChoBkdAZJKAtnPE9GgHTegDaAhHQJMZuZhKDkF1fZQoaAZHQGUokq2BretoB03oA2gIR0CTHqu3MINWdX2UKGgGR0BkbwyKvV3EaAdN6ANoCEdAkx+S8rZrYXV9lChoBkdAYotowEhaDGgHTegDaAhHQJMiWwcHWz51fZQoaAZHQGHf+CbtqpNoB03oA2gIR0CTMq3/giu/dX2UKGgGR0BkTlucc2itaAdN6ANoCEdAkzO7yc0+DHV9lChoBkdAYmI3++/QB2gHTegDaAhHQJM0OZfD1oR1fZQoaAZHQGRfkUTL4etoB03oA2gIR0CTQXb6guh9dX2UKGgGR0Bhp4kVvddnaAdN6ANoCEdAk0l4MWoFV3V9lChoBkdAXnkqmTC+DmgHTegDaAhHQJNJ4awUxmF1fZQoaAZHQGSRWjoIOYpoB03oA2gIR0CTTr3uNPxhdX2UKGgGR0Bj8LsjVx0daAdN6ANoCEdAk1CWsJY1YXV9lChoBkdAY/qvQF9roGgHTegDaAhHQJNlR52Qnx91fZQoaAZHQGaJ3TmW+oNoB03oA2gIR0CTaVT101ZUdX2UKGgGR0Au8SLZSNwSaAdL5mgIR0CTa4F2FFlTdX2UKGgGR0BjV52bG3nZaAdN6ANoCEdAk22a/yoXK3V9lChoBkdAYOY86FM7EGgHTegDaAhHQJNuThBJI2B1fZQoaAZHQGXiqvvBrN5oB03oA2gIR0CTcD/bj94vdX2UKGgGR0BmQU+qzZ6EaAdN6ANoCEdAk3Q9DQZ4wHV9lChoBkdAY4goegctG2gHTegDaAhHQJN06PbO/tZ1fZQoaAZHQGUyGALApKBoB03oA2gIR0CTdzSsKb8WdX2UKGgGR0BhJwO6NEPUaAdN6ANoCEdAk4ovkq+ajXV9lChoBkdAY7pgGbCrLmgHTegDaAhHQJOL0Pd2xIJ1fZQoaAZHQGXDDTSb6P9oB03oA2gIR0CTjIzWPLgXdX2UKGgGR0Be/nTqjaf0aAdN6ANoCEdAk5yBRqGlAXV9lChoBkdAY1IWZ7Xxv2gHTegDaAhHQJOisunMt9R1fZQoaAZHQGROJ6po9LZoB03oA2gIR0CTponFo+OfdX2UKGgGR0BjANsi0OVgaAdN6ANoCEdAk6f2UwBYFXV9lChoBkdAZ0SpqASWaGgHTegDaAhHQJO8NJkGzKN1fZQoaAZHQGUW3rleWv9oB03oA2gIR0CTwsgq3EyddX2UKGgGR0BiwRmmLtNSaAdN6ANoCEdAk8XhLbpNbnV9lChoBkdAZFonrIHTqmgHTegDaAhHQJPI/ZmI0qJ1fZQoaAZHQFyj/tpmEoRoB03oA2gIR0CTyelU6xPgdX2UKGgGR0Bhq2GKyfL+aAdN6ANoCEdAk8zEVzp5eXV9lChoBkdAZir1Ng0CR2gHTegDaAhHQJPRBGvwEyN1fZQoaAZHQGMZ80Ltu1poB03oA2gIR0CT0cS1E3KkdX2UKGgGR0BoCecz67/XaAdN6ANoCEdAk9QTIikftHV9lChoBkdATl8enyd4FGgHTQIBaAhHQJPYiIcinpB1fZQoaAZHQGh/W9DhLoRoB03oA2gIR0CT4o2IwdsBdX2UKGgGR0Bovmlj3EhraAdN6ANoCEdAk+ONRvWH13V9lChoBkdAZIr8GcFyJmgHTegDaAhHQJPkBZeRgZ11fZQoaAZHQGTEGE4//vRoB03oA2gIR0CT8XSJCSiedX2UKGgGR0BoSWTgVGkOaAdN6ANoCEdAk/fVbeMyanV9lChoBkdAYdtLns9jgGgHTegDaAhHQJP80OhCdBl1fZQoaAZHQGDuiFK02LpoB03oA2gIR0CT/sIAOrhjdX2UKGgGR0BmH+BDohZAaAdN6ANoCEdAlAM2ITGo73V9lChoBkdATHIf8uSOimgHS+toCEdAlBYn4TK1X3V9lChoBkdAY68MpgCwKWgHTegDaAhHQJQZGrU9ZA91fZQoaAZHQGLUdqtYB/9oB03oA2gIR0CUGxx0+1SgdX2UKGgGR0Bio7iGWUr1aAdN6ANoCEdAlB3ZdrwfAHV9lChoBkdAYSYzWwu/UWgHTegDaAhHQJQf+7e2uxN1fZQoaAZHQGeLC4SYgJVoB03oA2gIR0CUJIEXcgyNdX2UKGgGR0BiRQWpIczZaAdN6ANoCEdAlCVJ5JK8MHV9lChoBkdAI+SoGY8dP2gHS91oCEdAlCZu1ndwenV9lChoBkdAXzUffXPJJWgHTegDaAhHQJQnsgLZzxR1fZQoaAZHQGMQU/W1+iJoB03oA2gIR0CULF9gnc+JdX2UKGgGR0BolxLmITGpaAdN6ANoCEdAlDeuX7cfvHV9lChoBkdAZEy20AtFrmgHTegDaAhHQJQ4/lcQiA51fZQoaAZHQF9z+zdDYyxoB03oA2gIR0CUOZLjxTbWdX2UKGgGR0A+nF+NLlFMaAdL92gIR0CUS/mLcbiqdX2UKGgGR0BjRJ5Rjz7NaAdN6ANoCEdAlE7wNkOI7HV9lChoBkdAXf1HOKO1fGgHTegDaAhHQJRSW3BpHqh1fZQoaAZHQGgCu1v2oNxoB03oA2gIR0CUU55qdpZfdX2UKGgGR0BjO8WTHKfWaAdN6ANoCEdAlFaCEcsDn3V9lChoBkdAZatzreIl+mgHTegDaAhHQJRXj1Iy0rt1fZQoaAZHQGNo4ht+CshoB03oA2gIR0CUa95+pfhNdX2UKGgGR0Bl93/NqxkeaAdN6ANoCEdAlG7R7qptJnV9lChoBkdAZT1LX+VC5WgHTegDaAhHQJRxXu4PPLR1fZQoaAZHQGCA+Myad+ZoB03oA2gIR0CUdwsHB1s+dX2UKGgGR0Bjfc1wYLssaAdN6ANoCEdAlHgYFiay8nV9lChoBkdAYSJnGKhtcmgHTegDaAhHQJR5u4Ds+mp1fZQoaAZHQGWhLNnoPkJoB03oA2gIR0CUe4dqL0jDdX2UKGgGR0BiV6Z+hGpdaAdN6ANoCEdAlIGCIP9UCXV9lChoBkdAZZtDIikftGgHTegDaAhHQJSKjGPxQSB1fZQoaAZHQGDzLNwBHTZoB03oA2gIR0CUi5ZxaPjodX2UKGgGR0Bju4SvkiljaAdN6ANoCEdAlJzwizLOiXV9lChoBkdAZvCde6ZpjGgHTegDaAhHQJSgVQP7N0N1fZQoaAZHQGc+QxnFo+RoB03oA2gIR0CUpDDArQPadX2UKGgGR0BibAco6S1WaAdN6ANoCEdAlKW3DFZPmHV9lChoBkdAXwiHfuTibWgHTegDaAhHQJSpHLZBcA11fZQoaAZHQGPDL3sXzlNoB03oA2gIR0CUqtn/DLr5dX2UKGgGR0BiCZ1zQu27aAdN6ANoCEdAlMWzlo11n3V9lChoBkdAYwPpV0cOsmgHTegDaAhHQJTIaYD1XeZ1fZQoaAZHQGLvdI5HVgBoB03oA2gIR0CUypdat9x7dX2UKGgGR0BghQKYzBRAaAdN6ANoCEdAlM8XM2WIGnV9lChoBkdAYyhaX8fmtGgHTegDaAhHQJTP7Vc2R7t1fZQoaAZHQHFXNxdY4hloB03SAmgIR0CU0EDuBtk4dX2UKGgGR0BnSEkKNQ0oaAdN6ANoCEdAlNEKHKwIMXV9lChoBkdAYMCf7rLQomgHTegDaAhHQJTSR6jWTX91fZQoaAZHQGFlR1PnB+FoB03oA2gIR0CU1rpz90ihdX2UKGgGR0BffL8Jlar4aAdN6ANoCEdAlODWuPmxMXV9lChoBkdAbC0UhV2ic2gHTYUCaAhHQJTl0BYFJQN1fZQoaAZHQELn9roGIKtoB00uAWgIR0CU6jroW56MdX2UKGgGR0Bj4FUp/gBLaAdN6ANoCEdAlPTr4N7SiXV9lChoBkdAZZZ46fapP2gHTegDaAhHQJT47qOcUdt1fZQoaAZHQGKa1uivgWJoB03oA2gIR0CU/KYKpkwwdX2UKGgGR0BmOm1Bt1p1aAdN6ANoCEdAlP5kgW8AaXV9lChoBkdAY1S8Emplz2gHTegDaAhHQJUED9tMwlB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}