update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- bleu
|
7 |
+
model-index:
|
8 |
+
- name: bart-base-en-to-de
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# bart-base-en-to-de
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [ahazeemi/bart-base-finetuned-en-to-de](https://huggingface.co/ahazeemi/bart-base-finetuned-en-to-de) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.9665
|
20 |
+
- Bleu: 4.7851
|
21 |
+
- Gen Len: 19.453
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 3e-05
|
41 |
+
- train_batch_size: 32
|
42 |
+
- eval_batch_size: 32
|
43 |
+
- seed: 42
|
44 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
+
- lr_scheduler_type: linear
|
46 |
+
- num_epochs: 1
|
47 |
+
- mixed_precision_training: Native AMP
|
48 |
+
|
49 |
+
### Training results
|
50 |
+
|
51 |
+
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|
52 |
+
|:-------------:|:-----:|:------:|:---------------:|:------:|:-------:|
|
53 |
+
| 1.319 | 0.04 | 5000 | 1.1247 | 4.4467 | 19.447 |
|
54 |
+
| 1.295 | 0.07 | 10000 | 1.1012 | 4.4235 | 19.458 |
|
55 |
+
| 1.2901 | 0.11 | 15000 | 1.0923 | 4.4386 | 19.4423 |
|
56 |
+
| 1.2678 | 0.14 | 20000 | 1.0803 | 4.5259 | 19.4557 |
|
57 |
+
| 1.267 | 0.18 | 25000 | 1.0724 | 4.5534 | 19.4653 |
|
58 |
+
| 1.2444 | 0.21 | 30000 | 1.0591 | 4.4944 | 19.4623 |
|
59 |
+
| 1.2365 | 0.25 | 35000 | 1.0509 | 4.5736 | 19.446 |
|
60 |
+
| 1.2137 | 0.28 | 40000 | 1.0400 | 4.5346 | 19.4553 |
|
61 |
+
| 1.214 | 0.32 | 45000 | 1.0340 | 4.5733 | 19.4543 |
|
62 |
+
| 1.218 | 0.35 | 50000 | 1.0283 | 4.6076 | 19.4693 |
|
63 |
+
| 1.2118 | 0.39 | 55000 | 1.0225 | 4.6192 | 19.454 |
|
64 |
+
| 1.1948 | 0.43 | 60000 | 1.0152 | 4.6082 | 19.4553 |
|
65 |
+
| 1.1932 | 0.46 | 65000 | 1.0128 | 4.665 | 19.449 |
|
66 |
+
| 1.1889 | 0.5 | 70000 | 1.0028 | 4.6929 | 19.4493 |
|
67 |
+
| 1.2154 | 0.53 | 75000 | 1.0004 | 4.7151 | 19.4477 |
|
68 |
+
| 1.194 | 0.57 | 80000 | 0.9950 | 4.6655 | 19.467 |
|
69 |
+
| 1.1847 | 0.6 | 85000 | 0.9966 | 4.708 | 19.451 |
|
70 |
+
| 1.1848 | 0.64 | 90000 | 0.9897 | 4.7794 | 19.458 |
|
71 |
+
| 1.1762 | 0.67 | 95000 | 0.9866 | 4.7204 | 19.4523 |
|
72 |
+
| 1.1818 | 0.71 | 100000 | 0.9803 | 4.7137 | 19.458 |
|
73 |
+
| 1.1613 | 0.75 | 105000 | 0.9788 | 4.7652 | 19.4573 |
|
74 |
+
| 1.1738 | 0.78 | 110000 | 0.9775 | 4.8088 | 19.453 |
|
75 |
+
| 1.1569 | 0.82 | 115000 | 0.9752 | 4.7522 | 19.4577 |
|
76 |
+
| 1.1631 | 0.85 | 120000 | 0.9713 | 4.7301 | 19.4513 |
|
77 |
+
| 1.1517 | 0.89 | 125000 | 0.9690 | 4.7935 | 19.456 |
|
78 |
+
| 1.1577 | 0.92 | 130000 | 0.9686 | 4.791 | 19.4543 |
|
79 |
+
| 1.1607 | 0.96 | 135000 | 0.9676 | 4.7529 | 19.4533 |
|
80 |
+
| 1.153 | 0.99 | 140000 | 0.9665 | 4.7851 | 19.453 |
|
81 |
+
|
82 |
+
|
83 |
+
### Framework versions
|
84 |
+
|
85 |
+
- Transformers 4.22.2
|
86 |
+
- Pytorch 1.12.0+cu116
|
87 |
+
- Datasets 2.5.1
|
88 |
+
- Tokenizers 0.12.1
|