ahmedALM1221 commited on
Commit
d9f517f
·
1 Parent(s): 35be270

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +19 -34
README.md CHANGED
@@ -31,7 +31,7 @@ should probably proofread and complete it, then remove this comment. -->
31
 
32
  This model is a fine-tuned version of [microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft](https://huggingface.co/microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft) on the imagefolder dataset.
33
  It achieves the following results on the evaluation set:
34
- - Loss: 0.0076
35
  - Accuracy: 1.0
36
 
37
  ## Model description
@@ -51,7 +51,7 @@ More information needed
51
  ### Training hyperparameters
52
 
53
  The following hyperparameters were used during training:
54
- - learning_rate: 3e-05
55
  - train_batch_size: 16
56
  - eval_batch_size: 16
57
  - seed: 42
@@ -59,43 +59,28 @@ The following hyperparameters were used during training:
59
  - total_train_batch_size: 64
60
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
  - lr_scheduler_type: linear
62
- - lr_scheduler_warmup_ratio: 0.05
63
- - num_epochs: 30
64
 
65
  ### Training results
66
 
67
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
- | 1.5952 | 1.0 | 55 | 0.8490 | 0.6693 |
70
- | 0.7582 | 2.0 | 110 | 0.4561 | 0.8386 |
71
- | 0.4359 | 3.0 | 165 | 0.2408 | 0.9227 |
72
- | 0.318 | 4.0 | 220 | 0.1294 | 0.9568 |
73
- | 0.2414 | 5.0 | 275 | 0.0346 | 0.9909 |
74
- | 0.1888 | 6.0 | 330 | 0.0419 | 0.9864 |
75
- | 0.1717 | 7.0 | 385 | 0.0238 | 0.9943 |
76
- | 0.1785 | 8.0 | 440 | 0.0230 | 0.9943 |
77
- | 0.1654 | 9.0 | 495 | 0.0076 | 1.0 |
78
- | 0.1322 | 10.0 | 550 | 0.0046 | 1.0 |
79
- | 0.1123 | 11.0 | 605 | 0.0035 | 1.0 |
80
- | 0.0953 | 12.0 | 660 | 0.0025 | 1.0 |
81
- | 0.0864 | 13.0 | 715 | 0.0033 | 1.0 |
82
- | 0.0984 | 14.0 | 770 | 0.0033 | 0.9989 |
83
- | 0.0952 | 15.0 | 825 | 0.0015 | 1.0 |
84
- | 0.0678 | 16.0 | 880 | 0.0022 | 1.0 |
85
- | 0.0592 | 17.0 | 935 | 0.0013 | 1.0 |
86
- | 0.0729 | 18.0 | 990 | 0.0037 | 0.9989 |
87
- | 0.0672 | 19.0 | 1045 | 0.0041 | 0.9989 |
88
- | 0.0615 | 20.0 | 1100 | 0.0010 | 1.0 |
89
- | 0.058 | 21.0 | 1155 | 0.0009 | 1.0 |
90
- | 0.0571 | 22.0 | 1210 | 0.0021 | 0.9989 |
91
- | 0.0755 | 23.0 | 1265 | 0.0022 | 0.9989 |
92
- | 0.0688 | 24.0 | 1320 | 0.0025 | 0.9989 |
93
- | 0.0417 | 25.0 | 1375 | 0.0003 | 1.0 |
94
- | 0.0589 | 26.0 | 1430 | 0.0007 | 1.0 |
95
- | 0.0563 | 27.0 | 1485 | 0.0007 | 1.0 |
96
- | 0.0603 | 28.0 | 1540 | 0.0010 | 0.9989 |
97
- | 0.0469 | 29.0 | 1595 | 0.0005 | 1.0 |
98
- | 0.0525 | 30.0 | 1650 | 0.0004 | 1.0 |
99
 
100
 
101
  ### Framework versions
 
31
 
32
  This model is a fine-tuned version of [microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft](https://huggingface.co/microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft) on the imagefolder dataset.
33
  It achieves the following results on the evaluation set:
34
+ - Loss: 0.0013
35
  - Accuracy: 1.0
36
 
37
  ## Model description
 
51
  ### Training hyperparameters
52
 
53
  The following hyperparameters were used during training:
54
+ - learning_rate: 5e-05
55
  - train_batch_size: 16
56
  - eval_batch_size: 16
57
  - seed: 42
 
59
  - total_train_batch_size: 64
60
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
  - lr_scheduler_type: linear
62
+ - lr_scheduler_warmup_ratio: 0.5
63
+ - num_epochs: 15
64
 
65
  ### Training results
66
 
67
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
+ | 1.8968 | 1.0 | 55 | 1.5220 | 0.4795 |
70
+ | 1.0158 | 2.0 | 110 | 0.6740 | 0.7386 |
71
+ | 0.67 | 3.0 | 165 | 0.5239 | 0.8 |
72
+ | 0.4638 | 4.0 | 220 | 0.2628 | 0.8977 |
73
+ | 0.3936 | 5.0 | 275 | 0.1238 | 0.9568 |
74
+ | 0.3105 | 6.0 | 330 | 0.0565 | 0.9818 |
75
+ | 0.2625 | 7.0 | 385 | 0.1136 | 0.9568 |
76
+ | 0.2518 | 8.0 | 440 | 0.0339 | 0.9818 |
77
+ | 0.2099 | 9.0 | 495 | 0.0273 | 0.9909 |
78
+ | 0.1293 | 10.0 | 550 | 0.0166 | 0.9932 |
79
+ | 0.1565 | 11.0 | 605 | 0.0150 | 0.9966 |
80
+ | 0.0976 | 12.0 | 660 | 0.0047 | 1.0 |
81
+ | 0.1049 | 13.0 | 715 | 0.0047 | 0.9977 |
82
+ | 0.0678 | 14.0 | 770 | 0.0031 | 0.9989 |
83
+ | 0.0775 | 15.0 | 825 | 0.0013 | 1.0 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84
 
85
 
86
  ### Framework versions