ahmedALM1221
commited on
Commit
·
ff97657
1
Parent(s):
a1d64fa
update model card README.md
Browse files
README.md
CHANGED
@@ -15,13 +15,13 @@ model-index:
|
|
15 |
dataset:
|
16 |
name: imagefolder
|
17 |
type: imagefolder
|
18 |
-
config:
|
19 |
split: train
|
20 |
-
args:
|
21 |
metrics:
|
22 |
- name: Accuracy
|
23 |
type: accuracy
|
24 |
-
value: 0
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -31,8 +31,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
31 |
|
32 |
This model is a fine-tuned version of [microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft](https://huggingface.co/microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft) on the imagefolder dataset.
|
33 |
It achieves the following results on the evaluation set:
|
34 |
-
- Loss: 0.
|
35 |
-
- Accuracy: 0
|
36 |
|
37 |
## Model description
|
38 |
|
@@ -59,43 +59,43 @@ The following hyperparameters were used during training:
|
|
59 |
- total_train_batch_size: 64
|
60 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
- lr_scheduler_type: linear
|
62 |
-
- lr_scheduler_warmup_ratio: 0.
|
63 |
- num_epochs: 30
|
64 |
|
65 |
### Training results
|
66 |
|
67 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
69 |
-
|
|
70 |
-
|
|
71 |
-
|
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
-
| 0.
|
95 |
-
| 0.
|
96 |
-
| 0.
|
97 |
-
| 0.
|
98 |
-
| 0.
|
99 |
|
100 |
|
101 |
### Framework versions
|
|
|
15 |
dataset:
|
16 |
name: imagefolder
|
17 |
type: imagefolder
|
18 |
+
config: Augmented
|
19 |
split: train
|
20 |
+
args: Augmented
|
21 |
metrics:
|
22 |
- name: Accuracy
|
23 |
type: accuracy
|
24 |
+
value: 1.0
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
31 |
|
32 |
This model is a fine-tuned version of [microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft](https://huggingface.co/microsoft/swinv2-large-patch4-window12to16-192to256-22kto1k-ft) on the imagefolder dataset.
|
33 |
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.0004
|
35 |
+
- Accuracy: 1.0
|
36 |
|
37 |
## Model description
|
38 |
|
|
|
59 |
- total_train_batch_size: 64
|
60 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
- lr_scheduler_type: linear
|
62 |
+
- lr_scheduler_warmup_ratio: 0.05
|
63 |
- num_epochs: 30
|
64 |
|
65 |
### Training results
|
66 |
|
67 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
69 |
+
| 1.5952 | 1.0 | 55 | 0.8490 | 0.6693 |
|
70 |
+
| 0.7582 | 2.0 | 110 | 0.4561 | 0.8386 |
|
71 |
+
| 0.4359 | 3.0 | 165 | 0.2408 | 0.9227 |
|
72 |
+
| 0.318 | 4.0 | 220 | 0.1294 | 0.9568 |
|
73 |
+
| 0.2414 | 5.0 | 275 | 0.0346 | 0.9909 |
|
74 |
+
| 0.1888 | 6.0 | 330 | 0.0419 | 0.9864 |
|
75 |
+
| 0.1717 | 7.0 | 385 | 0.0238 | 0.9943 |
|
76 |
+
| 0.1785 | 8.0 | 440 | 0.0230 | 0.9943 |
|
77 |
+
| 0.1654 | 9.0 | 495 | 0.0076 | 1.0 |
|
78 |
+
| 0.1322 | 10.0 | 550 | 0.0046 | 1.0 |
|
79 |
+
| 0.1123 | 11.0 | 605 | 0.0035 | 1.0 |
|
80 |
+
| 0.0953 | 12.0 | 660 | 0.0025 | 1.0 |
|
81 |
+
| 0.0864 | 13.0 | 715 | 0.0033 | 1.0 |
|
82 |
+
| 0.0984 | 14.0 | 770 | 0.0033 | 0.9989 |
|
83 |
+
| 0.0952 | 15.0 | 825 | 0.0015 | 1.0 |
|
84 |
+
| 0.0678 | 16.0 | 880 | 0.0022 | 1.0 |
|
85 |
+
| 0.0592 | 17.0 | 935 | 0.0013 | 1.0 |
|
86 |
+
| 0.0729 | 18.0 | 990 | 0.0037 | 0.9989 |
|
87 |
+
| 0.0672 | 19.0 | 1045 | 0.0041 | 0.9989 |
|
88 |
+
| 0.0615 | 20.0 | 1100 | 0.0010 | 1.0 |
|
89 |
+
| 0.058 | 21.0 | 1155 | 0.0009 | 1.0 |
|
90 |
+
| 0.0571 | 22.0 | 1210 | 0.0021 | 0.9989 |
|
91 |
+
| 0.0755 | 23.0 | 1265 | 0.0022 | 0.9989 |
|
92 |
+
| 0.0688 | 24.0 | 1320 | 0.0025 | 0.9989 |
|
93 |
+
| 0.0417 | 25.0 | 1375 | 0.0003 | 1.0 |
|
94 |
+
| 0.0589 | 26.0 | 1430 | 0.0007 | 1.0 |
|
95 |
+
| 0.0563 | 27.0 | 1485 | 0.0007 | 1.0 |
|
96 |
+
| 0.0603 | 28.0 | 1540 | 0.0010 | 0.9989 |
|
97 |
+
| 0.0469 | 29.0 | 1595 | 0.0005 | 1.0 |
|
98 |
+
| 0.0525 | 30.0 | 1650 | 0.0004 | 1.0 |
|
99 |
|
100 |
|
101 |
### Framework versions
|