ahmeddbahaa commited on
Commit
3104a1c
·
1 Parent(s): 2cdf044

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +81 -0
README.md ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - summarization
4
+ - ar
5
+ - encoder-decoder
6
+ - roberta
7
+ - xlmroberta2xlmroberta
8
+ - Abstractive Summarization
9
+ - generated_from_trainer
10
+ datasets:
11
+ - wiki_lingua
12
+ model-index:
13
+ - name: xlmroberta2xlmroberta-finetuned-ar-wikilingua
14
+ results: []
15
+ ---
16
+
17
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
+ should probably proofread and complete it, then remove this comment. -->
19
+
20
+ # xlmroberta2xlmroberta-finetuned-ar-wikilingua
21
+
22
+ This model is a fine-tuned version of [](https://huggingface.co/) on the wiki_lingua dataset.
23
+ It achieves the following results on the evaluation set:
24
+ - Loss: 4.7757
25
+ - Rouge-1: 11.2
26
+ - Rouge-2: 1.96
27
+ - Rouge-l: 10.28
28
+ - Gen Len: 19.8
29
+ - Bertscore: 66.27
30
+
31
+ ## Model description
32
+
33
+ More information needed
34
+
35
+ ## Intended uses & limitations
36
+
37
+ More information needed
38
+
39
+ ## Training and evaluation data
40
+
41
+ More information needed
42
+
43
+ ## Training procedure
44
+
45
+ ### Training hyperparameters
46
+
47
+ The following hyperparameters were used during training:
48
+ - learning_rate: 5e-05
49
+ - train_batch_size: 4
50
+ - eval_batch_size: 4
51
+ - seed: 42
52
+ - gradient_accumulation_steps: 16
53
+ - total_train_batch_size: 64
54
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
55
+ - lr_scheduler_type: linear
56
+ - lr_scheduler_warmup_steps: 250
57
+ - num_epochs: 10
58
+ - label_smoothing_factor: 0.1
59
+
60
+ ### Training results
61
+
62
+ | Training Loss | Epoch | Step | Validation Loss | Rouge-1 | Rouge-2 | Rouge-l | Gen Len | Bertscore |
63
+ |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:---------:|
64
+ | 8.03 | 1.0 | 312 | 7.3208 | 0.19 | 0.0 | 0.19 | 20.0 | 54.84 |
65
+ | 7.2309 | 2.0 | 624 | 7.1107 | 1.17 | 0.03 | 1.16 | 20.0 | 60.0 |
66
+ | 7.0752 | 3.0 | 936 | 7.0061 | 2.58 | 0.15 | 2.55 | 20.0 | 63.52 |
67
+ | 6.7538 | 4.0 | 1248 | 6.4189 | 5.75 | 0.46 | 5.55 | 19.95 | 62.83 |
68
+ | 6.1513 | 5.0 | 1560 | 5.8402 | 8.46 | 1.04 | 8.08 | 19.2 | 64.25 |
69
+ | 5.6639 | 6.0 | 1872 | 5.3938 | 8.62 | 1.17 | 8.16 | 19.28 | 64.81 |
70
+ | 5.2857 | 7.0 | 2184 | 5.0719 | 9.34 | 1.41 | 8.61 | 19.71 | 65.29 |
71
+ | 5.027 | 8.0 | 2496 | 4.9047 | 10.42 | 1.52 | 9.57 | 19.57 | 65.75 |
72
+ | 4.8747 | 9.0 | 2808 | 4.8032 | 10.79 | 1.71 | 9.91 | 19.42 | 66.2 |
73
+ | 4.7855 | 10.0 | 3120 | 4.7757 | 11.01 | 1.73 | 10.04 | 19.55 | 66.24 |
74
+
75
+
76
+ ### Framework versions
77
+
78
+ - Transformers 4.19.4
79
+ - Pytorch 1.11.0+cu113
80
+ - Datasets 2.2.2
81
+ - Tokenizers 0.12.1