ahmedelgebaly commited on
Commit
f76f664
·
verified ·
1 Parent(s): 6e0fa4d

End of training

Browse files
Files changed (2) hide show
  1. README.md +140 -191
  2. adapter_model.bin +1 -1
README.md CHANGED
@@ -1,202 +1,151 @@
1
  ---
2
- base_model: meta-llama/Llama-3.1-8B
3
  library_name: peft
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
-
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
 
100
 
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
200
  ### Framework versions
201
 
202
- - PEFT 0.13.2
 
 
 
 
 
1
  ---
 
2
  library_name: peft
3
+ license: llama3.1
4
+ base_model: meta-llama/Llama-3.1-8B
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: llama-3.1-8b-squadv2
10
+ results: []
11
  ---
12
 
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
 
16
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
17
+ <details><summary>See axolotl config</summary>
18
 
19
+ axolotl version: `0.4.1`
20
+ ```yaml
21
+ base_model: meta-llama/Llama-3.1-8B
22
+ model_type: AutoModelForCausalLM
23
+ tokenizer_type: AutoTokenizer
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
 
25
+ load_in_8bit: false
26
+ load_in_4bit: true
27
+ strict: false
28
+
29
+ datasets:
30
+ - path: ahmedelgebaly/SQuad_2_Alpaca
31
+ type: alpaca
32
+ split: train
33
+
34
+ test_datasets:
35
+ - path: ahmedelgebaly/SQuad_2_Alpaca
36
+ type: alpaca
37
+ split: validation
38
+
39
+ dataset_prepared_path:
40
+ output_dir: ./outputs/qlora-out
41
+
42
+ adapter: qlora
43
+ lora_model_dir:
44
+
45
+ sequence_len: 4096
46
+ sample_packing: true
47
+ pad_to_sequence_len: true
48
+
49
+ lora_r: 32
50
+ lora_alpha: 16
51
+ lora_dropout: 0.05
52
+ lora_target_modules:
53
+ lora_target_linear: true
54
+ lora_fan_in_fan_out:
55
+
56
+ wandb_project: llama-3.1-8b-squadv2
57
+ wandb_entity:
58
+ wandb_watch:
59
+ wandb_name: llama-3.1-8b-squadv2-v0
60
+ wandb_log_model:
61
+
62
+ hub_model_id: ahmedelgebaly/llama-3.1-8b-squadv2
63
+
64
+ gradient_accumulation_steps: 4
65
+ micro_batch_size: 4
66
+ num_epochs: 1
67
+ optimizer: paged_adamw_32bit
68
+ lr_scheduler: cosine
69
+ learning_rate: 0.0002
70
+
71
+ train_on_inputs: false
72
+ group_by_length: false
73
+ bf16: auto
74
+ fp16:
75
+ tf32: false
76
+
77
+ gradient_checkpointing: true
78
+ early_stopping_patience:
79
+ resume_from_checkpoint:
80
+ local_rank:
81
+ logging_steps: 1
82
+ xformers_attention:
83
+ flash_attention: true
84
+
85
+ warmup_steps: 10
86
+ evals_per_epoch: 4
87
+ eval_table_size:
88
+ saves_per_epoch: 1
89
+ debug:
90
+ deepspeed:
91
+ weight_decay: 0.0
92
+ fsdp:
93
+ fsdp_config:
94
+ special_tokens:
95
+ pad_token: "<|end_of_text|>"
96
+
97
+ ```
98
+
99
+ </details><br>
100
+
101
+ # llama-3.1-8b-squadv2
102
+
103
+ This model is a fine-tuned version of [meta-llama/Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B) on the None dataset.
104
+ It achieves the following results on the evaluation set:
105
+ - Loss: 0.9113
106
+
107
+ ## Model description
108
+
109
+ More information needed
110
+
111
+ ## Intended uses & limitations
112
+
113
+ More information needed
114
+
115
+ ## Training and evaluation data
116
+
117
+ More information needed
118
+
119
+ ## Training procedure
120
+
121
+ ### Training hyperparameters
122
+
123
+ The following hyperparameters were used during training:
124
+ - learning_rate: 0.0002
125
+ - train_batch_size: 4
126
+ - eval_batch_size: 4
127
+ - seed: 42
128
+ - gradient_accumulation_steps: 4
129
+ - total_train_batch_size: 16
130
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
131
+ - lr_scheduler_type: cosine
132
+ - lr_scheduler_warmup_steps: 10
133
+ - num_epochs: 1
134
+
135
+ ### Training results
136
+
137
+ | Training Loss | Epoch | Step | Validation Loss |
138
+ |:-------------:|:------:|:----:|:---------------:|
139
+ | 1.4871 | 0.0033 | 1 | 1.5437 |
140
+ | 0.9076 | 0.2512 | 77 | 0.9311 |
141
+ | 0.9122 | 0.5024 | 154 | 0.9173 |
142
+ | 0.8535 | 0.7537 | 231 | 0.9113 |
143
 
 
144
 
 
145
  ### Framework versions
146
 
147
+ - PEFT 0.13.2
148
+ - Transformers 4.45.2
149
+ - Pytorch 2.3.1+cu121
150
+ - Datasets 3.0.1
151
+ - Tokenizers 0.20.1
adapter_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:08a0a2c39e636238565ab9082b45447d924099104d7817ffb7cfeb00d997d9de
3
  size 335706186
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd9d5db8533960716fb2839314c68efff3571cf5e9f05e21bd7430083b3f3b8b
3
  size 335706186