File size: 1,807 Bytes
b32aff8 4e7dcfc b32aff8 9695937 b32aff8 3e6e624 b32aff8 3e6e624 b32aff8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
library_name: transformers
license: apache-2.0
base_model: Qwen/Qwen2.5-Coder-1.5B-Instruct
tags:
- llama-factory
- full
- generated_from_trainer
model-index:
- name: qwen2.5_1.5b_500k_16kcw_4ep
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# qwen2.5_1.5b_500k_16kcw_4ep
This model is a fine-tuned version of [Qwen/Qwen2.5-Coder-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-1.5B-Instruct) on the anghabench dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0007
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- total_eval_batch_size: 4
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 4.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:------:|:---------------:|
| 0.0014 | 0.9981 | 61000 | 0.0017 |
| 0.0015 | 1.9962 | 122000 | 0.0010 |
| 0.0018 | 2.9944 | 183000 | 0.0006 |
| 0.0003 | 3.9925 | 244000 | 0.0007 |
### Framework versions
- Transformers 4.46.1
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
|