File size: 1,142 Bytes
3bcb469 1d3b32b cf9899b f002d94 cf9899b 5db38cd d5e9b4f 3bfd110 d5e9b4f cf9899b f002d94 d5e9b4f cf9899b f002d94 cf9899b f002d94 2a6b6a1 f002d94 cf9899b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
---
license: apache-2.0
---
Base Model: `google/t5-small`
A seq2seq event triggers and entities tagger trained on the dataset: `ahmeshaf/ecb_plus_ed`
## Usage
Input:
```shell
triggers: I like this model and hate this sentence
```
Output:
```shell
like | hate
```
- Python
### Using .generate()
```python
from transformers import GenerationConfig, T5ForConditionalGeneration, T5Tokenizer
model_name = "ahmeshaf/ecb_tagger_seq2seq"
model = T5ForConditionalGeneration.from_pretrained(model_name)
tokenizer = T5Tokenizer.from_pretrained(model_name)
generation_config = GenerationConfig.from_pretrained(model_name)
tokenized_inputs = tokenizer(["I like this model and hate this sentence ."], return_tensors="pt")
outputs = model.generate(**tokenized_inputs, generation_config=generation_config)
print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
# ['like | hate']
```
### Using pipeline
```python
from transformers import pipeline
srl = pipeline("text2text-generation", "ahmeshaf/ecb_tagger_seq2seq")
print(srl(["I like this model and hate this sentence ."]))
# [{'generated_text': 'like | hate'}]
```
|