File size: 4,654 Bytes
3800212
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
---
tags:
- text-to-speech
- gronings
- Tacotron 2
language: gos
datasets:
- gronings
---
## GroTTS Model 

This model is trained with the [Tacotron 2](https://arxiv.org/abs/1712.05884) architecture using approx. 2 hours of Gronings TTS dataset. For the best results, you need to download the vocoder separately from [here](https://huggingface.co/ahnafsamin/parallelwavegan-gronings) and then use the following code:
```
from espnet2.bin.tts_inference import Text2Speech
from scipy.io.wavfile import write

model = Text2Speech.from_pretrained(
    model_file="path_to_the_model_file_in_pth_format",
    vocoder_file="path_to_the_vocoder_file_in_pkl_format"
)
output = model("This is a simple test.")
write("x.wav", 22050, output['wav'].numpy())
```


## TTS config

<details><summary>expand</summary>

```
config: conf/train.yaml
print_config: false
log_level: INFO
dry_run: false
iterator_type: sequence
output_dir: exp/tts_train_raw_char_tacotron
ngpu: 1
seed: 0
num_workers: 1
num_att_plot: 3
dist_backend: nccl
dist_init_method: env://
dist_world_size: null
dist_rank: null
local_rank: 0
dist_master_addr: null
dist_master_port: null
dist_launcher: null
multiprocessing_distributed: false
unused_parameters: false
sharded_ddp: false
cudnn_enabled: true
cudnn_benchmark: false
cudnn_deterministic: true
collect_stats: false
write_collected_feats: false
max_epoch: 200
patience: null
val_scheduler_criterion:
- valid
- loss
early_stopping_criterion:
- valid
- loss
- min
best_model_criterion:
-   - valid
    - loss
    - min
-   - train
    - loss
    - min
keep_nbest_models: 5
nbest_averaging_interval: 0
grad_clip: 1.0
grad_clip_type: 2.0
grad_noise: false
accum_grad: 2
no_forward_run: false
resume: true
train_dtype: float32
use_amp: false
log_interval: null
use_matplotlib: true
use_tensorboard: true
use_wandb: false
wandb_project: null
wandb_id: null
wandb_entity: null
wandb_name: null
wandb_model_log_interval: -1
detect_anomaly: false
pretrain_path: null
init_param: []
ignore_init_mismatch: false
freeze_param: []
num_iters_per_epoch: 1000
batch_size: 20
valid_batch_size: null
batch_bins: 2000000
valid_batch_bins: null
train_shape_file:
- exp/tts_stats_raw_char_tacotron/train/text_shape.char
- exp/tts_stats_raw_char_tacotron/train/speech_shape
valid_shape_file:
- exp/tts_stats_raw_char_tacotron/valid/text_shape.char
- exp/tts_stats_raw_char_tacotron/valid/speech_shape
batch_type: numel
valid_batch_type: null
fold_length:
- 150
- 204800
sort_in_batch: descending
sort_batch: descending
multiple_iterator: false
chunk_length: 500
chunk_shift_ratio: 0.5
num_cache_chunks: 1024
train_data_path_and_name_and_type:
-   - dump/raw/tr_no_dev/text
    - text
    - text
-   - dump/raw/tr_no_dev/wav.scp
    - speech
    - sound
valid_data_path_and_name_and_type:
-   - dump/raw/dev/text
    - text
    - text
-   - dump/raw/dev/wav.scp
    - speech
    - sound
allow_variable_data_keys: false
max_cache_size: 0.0
max_cache_fd: 32
valid_max_cache_size: null
optim: adam
optim_conf:
    lr: 0.001
    eps: 1.0e-06
    weight_decay: 0.0
scheduler: null
scheduler_conf: {}
token_list:
- <blank>
- <unk>
- <space>
- E
- N
- A
- O
- T
- I
- R
- D
- L
- S
- K
- M
- G
- U
- H
- .
- W
- V
- Z
- P
- B
- ','
- J
- C
- F
- '?'
- ''''
- '!'
- Y
- X
- '`'
- <sos/eos>
odim: null
model_conf: {}
use_preprocessor: true
token_type: char
bpemodel: null
non_linguistic_symbols: null
cleaner: tacotron
g2p: g2p_en
feats_extract: fbank
feats_extract_conf:
    n_fft: 1024
    hop_length: 256
    win_length: null
    fs: 22050
    fmin: 80
    fmax: 7600
    n_mels: 80
normalize: global_mvn
normalize_conf:
    stats_file: exp/tts_stats_raw_char_tacotron/train/feats_stats.npz
tts: tacotron2
tts_conf:
    embed_dim: 512
    elayers: 1
    eunits: 512
    econv_layers: 3
    econv_chans: 512
    econv_filts: 5
    atype: location
    adim: 512
    aconv_chans: 32
    aconv_filts: 15
    cumulate_att_w: true
    dlayers: 2
    dunits: 1024
    prenet_layers: 2
    prenet_units: 256
    postnet_layers: 5
    postnet_chans: 512
    postnet_filts: 5
    output_activation: null
    use_batch_norm: true
    use_concate: true
    use_residual: false
    dropout_rate: 0.5
    zoneout_rate: 0.1
    reduction_factor: 1
    spk_embed_dim: null
    use_masking: true
    bce_pos_weight: 5.0
    use_guided_attn_loss: true
    guided_attn_loss_sigma: 0.4
    guided_attn_loss_lambda: 1.0
pitch_extract: null
pitch_extract_conf: {}
pitch_normalize: null
pitch_normalize_conf: {}
energy_extract: null
energy_extract_conf: {}
energy_normalize: null
energy_normalize_conf: {}
required:
- output_dir
- token_list
version: 0.10.7a1
distributed: false


```
</details>