leaderboard-pr-bot
commited on
Adding Evaluation Results
Browse filesThis is an automated PR created with https://huggingface.co/spaces/Weyaxi/open-llm-leaderboard-results-pr
The purpose of this PR is to add evaluation results from the Open LLM Leaderboard to your model card.
If you encounter any issues, please report them to https://huggingface.co/spaces/Weyaxi/open-llm-leaderboard-results-pr/discussions
README.md
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
---
|
2 |
-
license: apache-2.0
|
3 |
language:
|
4 |
- ar
|
5 |
- he
|
@@ -62,8 +61,7 @@ language:
|
|
62 |
- et
|
63 |
- fi
|
64 |
- hu
|
65 |
-
|
66 |
-
pipeline_tag: text-generation
|
67 |
tags:
|
68 |
- multilingual
|
69 |
- PyTorch
|
@@ -75,7 +73,111 @@ tags:
|
|
75 |
datasets:
|
76 |
- mc4
|
77 |
- wikipedia
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
---
|
80 |
|
81 |
# Multilingual GPT model
|
@@ -141,3 +243,17 @@ Languages:
|
|
141 |
The model was trained with sequence length 512 using Megatron and Deepspeed libs by [SberDevices](https://sberdevices.ru/) team on a dataset of 600 GB of texts in 61 languages. The model has seen 440 billion BPE tokens in total.
|
142 |
|
143 |
Total training time was around 14 days on 256 Nvidia V100 GPUs.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
|
|
2 |
language:
|
3 |
- ar
|
4 |
- he
|
|
|
61 |
- et
|
62 |
- fi
|
63 |
- hu
|
64 |
+
license: apache-2.0
|
|
|
65 |
tags:
|
66 |
- multilingual
|
67 |
- PyTorch
|
|
|
73 |
datasets:
|
74 |
- mc4
|
75 |
- wikipedia
|
76 |
+
pipeline_tag: text-generation
|
77 |
+
thumbnail: https://github.com/sberbank-ai/mgpt
|
78 |
+
model-index:
|
79 |
+
- name: mGPT
|
80 |
+
results:
|
81 |
+
- task:
|
82 |
+
type: text-generation
|
83 |
+
name: Text Generation
|
84 |
+
dataset:
|
85 |
+
name: AI2 Reasoning Challenge (25-Shot)
|
86 |
+
type: ai2_arc
|
87 |
+
config: ARC-Challenge
|
88 |
+
split: test
|
89 |
+
args:
|
90 |
+
num_few_shot: 25
|
91 |
+
metrics:
|
92 |
+
- type: acc_norm
|
93 |
+
value: 23.81
|
94 |
+
name: normalized accuracy
|
95 |
+
source:
|
96 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ai-forever/mGPT
|
97 |
+
name: Open LLM Leaderboard
|
98 |
+
- task:
|
99 |
+
type: text-generation
|
100 |
+
name: Text Generation
|
101 |
+
dataset:
|
102 |
+
name: HellaSwag (10-Shot)
|
103 |
+
type: hellaswag
|
104 |
+
split: validation
|
105 |
+
args:
|
106 |
+
num_few_shot: 10
|
107 |
+
metrics:
|
108 |
+
- type: acc_norm
|
109 |
+
value: 26.37
|
110 |
+
name: normalized accuracy
|
111 |
+
source:
|
112 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ai-forever/mGPT
|
113 |
+
name: Open LLM Leaderboard
|
114 |
+
- task:
|
115 |
+
type: text-generation
|
116 |
+
name: Text Generation
|
117 |
+
dataset:
|
118 |
+
name: MMLU (5-Shot)
|
119 |
+
type: cais/mmlu
|
120 |
+
config: all
|
121 |
+
split: test
|
122 |
+
args:
|
123 |
+
num_few_shot: 5
|
124 |
+
metrics:
|
125 |
+
- type: acc
|
126 |
+
value: 25.17
|
127 |
+
name: accuracy
|
128 |
+
source:
|
129 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ai-forever/mGPT
|
130 |
+
name: Open LLM Leaderboard
|
131 |
+
- task:
|
132 |
+
type: text-generation
|
133 |
+
name: Text Generation
|
134 |
+
dataset:
|
135 |
+
name: TruthfulQA (0-shot)
|
136 |
+
type: truthful_qa
|
137 |
+
config: multiple_choice
|
138 |
+
split: validation
|
139 |
+
args:
|
140 |
+
num_few_shot: 0
|
141 |
+
metrics:
|
142 |
+
- type: mc2
|
143 |
+
value: 39.62
|
144 |
+
source:
|
145 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ai-forever/mGPT
|
146 |
+
name: Open LLM Leaderboard
|
147 |
+
- task:
|
148 |
+
type: text-generation
|
149 |
+
name: Text Generation
|
150 |
+
dataset:
|
151 |
+
name: Winogrande (5-shot)
|
152 |
+
type: winogrande
|
153 |
+
config: winogrande_xl
|
154 |
+
split: validation
|
155 |
+
args:
|
156 |
+
num_few_shot: 5
|
157 |
+
metrics:
|
158 |
+
- type: acc
|
159 |
+
value: 50.67
|
160 |
+
name: accuracy
|
161 |
+
source:
|
162 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ai-forever/mGPT
|
163 |
+
name: Open LLM Leaderboard
|
164 |
+
- task:
|
165 |
+
type: text-generation
|
166 |
+
name: Text Generation
|
167 |
+
dataset:
|
168 |
+
name: GSM8k (5-shot)
|
169 |
+
type: gsm8k
|
170 |
+
config: main
|
171 |
+
split: test
|
172 |
+
args:
|
173 |
+
num_few_shot: 5
|
174 |
+
metrics:
|
175 |
+
- type: acc
|
176 |
+
value: 0.0
|
177 |
+
name: accuracy
|
178 |
+
source:
|
179 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ai-forever/mGPT
|
180 |
+
name: Open LLM Leaderboard
|
181 |
---
|
182 |
|
183 |
# Multilingual GPT model
|
|
|
243 |
The model was trained with sequence length 512 using Megatron and Deepspeed libs by [SberDevices](https://sberdevices.ru/) team on a dataset of 600 GB of texts in 61 languages. The model has seen 440 billion BPE tokens in total.
|
244 |
|
245 |
Total training time was around 14 days on 256 Nvidia V100 GPUs.
|
246 |
+
|
247 |
+
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
|
248 |
+
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ai-forever__mGPT)
|
249 |
+
|
250 |
+
| Metric |Value|
|
251 |
+
|---------------------------------|----:|
|
252 |
+
|Avg. |27.61|
|
253 |
+
|AI2 Reasoning Challenge (25-Shot)|23.81|
|
254 |
+
|HellaSwag (10-Shot) |26.37|
|
255 |
+
|MMLU (5-Shot) |25.17|
|
256 |
+
|TruthfulQA (0-shot) |39.62|
|
257 |
+
|Winogrande (5-shot) |50.67|
|
258 |
+
|GSM8k (5-shot) | 0.00|
|
259 |
+
|