File size: 13,983 Bytes
51cc7d2
b648c36
51cc7d2
b648c36
 
51cc7d2
b648c36
 
 
51cc7d2
b648c36
 
 
 
51cc7d2
 
 
 
36734e3
 
 
51cc7d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

---
languages:
- as
- bn
- gu
- hi
- kn
- ml
- mr
- or
- pa
- ta
- te
tags:
- multilingual
- nlp
- indicnlp
widget:
- text: वैश्विक व्यापार युद्ध की शिकार हुई तुर्की की मुद्रा लीरा के डूबने से अमेरिकी डॉलर के मुकाबले रुपया अब तक के न्यूनतम स्तर पर पहुंच गया। रुपये में रिकॉर्ड गिरावट से सोने की चमक में निखार नहीं  सकी। वैश्विक बाजार में सोना करीब आठ महीने के निचले स्तर पर पहुंच गया तो घरेलू बाजार में यह करीब नौ महीने के निचले स्तर पर चला गया। वैश्विक मंदी की आशंका से वैश्विक बाजार में चांदी करीब ढाई साल और घरेलू बाजार में तकरीबन नौ महीने के निचले स्तर पर पहुंच गई। तुर्की की आर्थिक चिंता के कारण अमेरिकी डॉलर के मुकाबले रुपया कारोबार के दौरान 70.80 के स्तर तक गिर गया। यह इसका ऐतिहासिक रिकॉर्ड निम्न स्तर है। कमजोर रुपये से सोने की चमक बढऩे की उम्मीद की जा रही थी लेकिन वैश्विक बाजार में सोने की कीमत गिरकर 1,193.50 डॉलर प्रति औंस पहुंचने के कारण घरेलू बाजार में भी सोने की चमक फीकी पड़ गई। घरेलू बाजार में सोना गिरकर 29,655 रुपये प्रति 10 ग्राम पहुंच गया। घरेलू वायदा बाजार यानी एमसीएक्स पर सोना 29,700 के आस-पास कारोबार कर रहा है। देश में इस साल सोने की मांग में लगातार गिरावट देखने को मिल रही थी। अप्रैल-जून तिमाही में सोने का आयात 25 फीसदी से भी कम हुआ है। चालू महीने में सोने की मांग बढऩे की उम्मीद जगी थी लेकिन यह उम्मीद टूट सकती है क्योंकि दुनिया के सबसे बड़े गोल्ड फंड एसपीडीआर गोल्ड की होल्डिंग अप्रैल के बाद 10 फीसदी गिर चुकी है। इस समय यह पिछले ढाई साल के निचले स्तर पर है। इस साल वैश्विक बाजार में सोना करीब 8.5 फीसदी और घरेलू बाजार में 1.5 फीसदी टूट चुका है। सराफा मामलों के जानकार अनिल अग्रवाल कहते हैं कि वैश्विक हालात ऐसे हैं कि इस समय निवेशक डॉलर में पैसा लगा रहे हैं। इस कारण दूसरी मुद्रा और जिंस दबाव में हैं। हालांकि हालात यही रहे तो सोने में तेज सुधार भी देखने को मिलेगा। वैश्विक मंदी की बढ़ती आशंका का सबसे ज्यादा असर चांदी पर पड़ रहा है। वैश्विक बाजार में चांदी के दाम ढाई साल के निचले स्तर पर पहुंच चुके हैं। वैश्विक बाजार में चांदी की कीमत 15 डॉलर प्रति औंस के करीब चल रही है। इसके पहले अप्रैल 2016 में चांदी इस स्तर पर थी। वैश्विक बाजार में चांदी के दाम दो महीने पहले 18.13 डॉलर प्रति औंस पर चल रहे थे। चांदी कारोबारी राहुल मेहता कहते हैं कि सोना और मूल धातु में कमजोरी से चांदी पर दोहरा दबाव पड़ रहा है। वैश्विक बाजार का व्यापार युद्ध अब मुद्रा युद्ध में बदल गया है। वैश्विक अर्थव्यवस्था एक बार फिर मंदी की गिरफ्त में  सकती है जिसके कारण औद्योगिक विकास भी प्रभावित होगा। यही वजह है कि चांदी की कीमतें लगातार लुढक़ रही हैं क्योंकि मांग में कमी आने की आशंका बढ़ती जा रही है। फिलहाल घरेलू बाजार में चांदी 37,825 रुपये प्रति किलोग्राम पर बिक रही है। तुर्की के आर्थिक संकट से एक बार फिर वैश्विक मंदी का डर है जिसका असर दुनियाभर के बाजारों पर देखा जा सकता है। इसने विश्व स्तर पर निवेशकों के रुख को प्रभावित किया है और वे डॉलर को एक सुरक्षित निवेश के तौर पर देख रहे हैं। आनंद राठी शेयर्स ऐंड स्टाक ब्रोकर्स में शोध विश्लेषक आर मारू ने कहा कि आयातकों की अधिक मांग से रुपये की विनिमय दर में गिरावट आई। उन्होंने कहा, तुर्की संकट को लेकर अनिश्चितता तथा डॉलर सूचकांक में तेजी को देखते हुए आयातक आक्रमक तरीके से डॉलर की लिवाली कर रहे हैं। दूसरी तरफ आरबीआई की तरफ से आक्रमक हस्तक्षेप  होने से भी रुपया नीचे आया। सरकार ने अमेरिकी डॉलर के मुकाबले रुपये के अब तक के न्यूनतम स्तर पर पहुंचने के लिए बाह्य कारकों को जिम्मेदार ठहराते हुए कहा कि इसमें चिंता की कोई बात नहीं है।</s><2hi>
	
---

MultiIndicHeadlineGenerationSS  is a multilingual, sequence-to-sequence pre-trained model focusing only on Indic languages. It currently supports 11 Indian languages and is finetuned on [IndicBARTSS](https://huggingface.co/ai4bharat/IndicBARTSS) checkpoint. You can use MultiIndicHeadlineGenerationSS model to build natural language generation applications in Indian languages for tasks like summarization, headline generation and other summarization related tasks. Some salient features of the MultiIndicHeadlineGenerationSS are:

<ul>
<li >Supported languages: Assamese, Bengali, Gujarati, Hindi, Marathi, Odiya, Punjabi, Kannada, Malayalam, Tamil, and Telugu. Not all of these languages are supported by mBART50 and mT5. </li>
<li >The model is much smaller than the mBART and mT5(-base) models, so less computationally expensive for finetuning and decoding. </li>
<li> Trained on large Indic language corpora (1.316 million paragraphs and 5.9 million unique tokens) . </li>
<li>Unlike ai4bharat/MultiIndicHeadlineGeneration each language is written in its own script so you do not need to perform any script mapping to/from Devanagari.</li>
</ul>


# Usage:

```
from transformers import MBartForConditionalGeneration, AutoModelForSeq2SeqLM
from transformers import AlbertTokenizer, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("ai4bharat/MultiIndicHeadlineGenerationSS", do_lower_case=False, use_fast=False, keep_accents=True)

# Or use tokenizer = AlbertTokenizer.from_pretrained("ai4bharat/MultiIndicHeadlineGenerationSS", do_lower_case=False, use_fast=False, keep_accents=True)

model = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/MultiIndicHeadlineGenerationSS")

# Or use model = MBartForConditionalGeneration.from_pretrained("ai4bharat/MultiIndicHeadlineGenerationSS")

# Some initial mapping
bos_id = tokenizer._convert_token_to_id_with_added_voc("<s>")
eos_id = tokenizer._convert_token_to_id_with_added_voc("</s>")
pad_id = tokenizer._convert_token_to_id_with_added_voc("<pad>")
# To get lang_id use any of ['<2as>', '<2bn>', '<2gu>', '<2hi>', '<2kn>', '<2ml>', '<2mr>', '<2or>', '<2pa>', '<2ta>', '<2te>']

# First tokenize the input and outputs. The format below is how MultiIndicHeadlineGenerationSS was trained so the input should be "Paragraph </s> <2xx>" where xx is the language code. Similarly, the output should be "<2yy> Sentence </s>". 

inp = tokenizer("यूट्यूब या फेसबुक पर वीडियो देखते समय आप भी बफरिंग की वजह से परेशान होते हैं? इसका जवाब हां है तो जल्द ही आपकी सारी समस्या खत्म होने वाली है। दरअसल, टेलीकॉम मिनिस्टर अश्विनी वैष्णव ने पिछले सप्ताह कहा कि अगस्त के अंत तक हर-हाल में '5G' इंटरनेट लॉन्च हो जाएगा। उन्होंने यह भी कहा है कि स्पेक्ट्रम की बिक्री शुरू हो चुकी है और जून तक ये प्रोसेस खत्म होने की संभावना है।</s> <2hi>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids # tensor([[58232,    76, 14514,    53,  5344, 10605, 1052,   680,    83,   648, . . . . , 12126,   725,    19, 13635,    17,     7, 64001, 64007]])

out = tokenizer("<2hi> 5G इंटरनेट का इंतजार हुआ खत्म:अगस्त तक देश में शुरू हो सकती है 5G सर्विस </s>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids  # tensor([[64007,   329,  1906, 15429, . . . . ,17,   329, 1906, 27241, 64001]])

model_outputs=model(input_ids=inp, decoder_input_ids=out[:,0:-1], labels=out[:,1:])

# For loss
model_outputs.loss ## This is not label smoothed.

# For logits
model_outputs.logits

# For generation. Pardon the messiness. Note the decoder_start_token_id.

model.eval() # Set dropouts to zero

model_output=model.generate(inp, use_cache=True, num_beams=4, max_length=32, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2en>"))

# Decode to get output strings
decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
print(decoded_output) # अगस्त के अंत तक '5G' इंटरनेट लॉन्च हो जाएगा : अश्विनी वैष्णव


```

# Benchmarks
Scores on the `MultiIndicHeadlineGenerationSS` test sets are as follows:

Language | Rouge-1 / Rouge-2 / Rouge-L
---------|----------------------------
as	|	48.10	/	32.41	/	46.82
bn	|	35.71	/	18.93	/	33.49
gu	|	32.41	/	16.95	/	30.87
hi	|	38.48	/	18.44	/	33.60
kn	|	65.22	/	54.23	/	64.50
ml	|	58.52	/	47.02	/	57.60
mr 	|	34.11	/	18.36	/	33.04
or	|	24.83	/	11.00	/	23.74
pa 	|	45.15	/	27.71	/	42.12
ta 	|	47.15	/	31.09	/	45.72
te 	|	36.80	/	20.81	/	35.58
average	|	42.41	/	27.00	/	40.64


# Contributors
<ul>
<li> Aman Kumar </li>
<li> Prachi Sahu </li>
<li> Himani Shrotriya </li>
<li> Raj Dabre </li>
<li> Anoop Kunchukuttan </li>
<li> Ratish Puduppully </li>
<li> Mitesh M. Khapra </li>
<li> Pratyush Kumar </li>
</ul>

# Paper
If you use MultiIndicHeadlineGeneration, please cite the following paper:
```
@inproceedings{Kumar2022IndicNLGSM,
  title={IndicNLG Suite: Multilingual Datasets for Diverse NLG Tasks in Indic Languages},
  author={Aman Kumar and Himani Shrotriya and Prachi Sahu and Raj Dabre and Ratish Puduppully and Anoop Kunchukuttan and Amogh Mishra and Mitesh M. Khapra and Pratyush Kumar},
  year={2022},
  url = "https://arxiv.org/abs/2203.05437"
  }   
```