File size: 1,981 Bytes
67d2697 da09533 67d2697 da09533 5fe642a ee56485 da09533 ee56485 da09533 d9df41c ee56485 da09533 ee56485 da09533 ee56485 da09533 ee56485 da09533 ee56485 f6958a1 ee56485 da09533 ee56485 f6958a1 ee56485 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
license: mit
language:
- as
pipeline_tag: automatic-speech-recognition
library_name: nemo
---
## IndicConformer
IndicConformer is a Hybrid CTC-RNNT conformer ASR(Automatic Speech Recognition) model.
### Language
Assamese
### Input
This model accepts 16000 KHz Mono-channel Audio (wav files) as input.
### Output
This model provides transcribed speech as a string for a given audio sample.
## Model Architecture
This model is a conformer-Large model, consisting of 120M parameters, as the encoder, with a hybrid CTC-RNNT decoder. The model has 17 conformer blocks with
512 as the model dimension.
## AI4Bharat NeMo:
To load, train, fine-tune or play with the model you will need to install [AI4Bharat NeMo](https://github.com/AI4Bharat/NeMo). We recommend you install it using the command shown below
```
git clone https://github.com/AI4Bharat/NeMo.git && cd NeMo && git checkout nemo-v2 && bash reinstall.sh
```
## Usage
Download and load the model from Huggingface.
```
import torch
import nemo.collections.asr as nemo_asr
model = nemo_asr.models.ASRModel.from_pretrained("ai4bharat/indicconformer_stt_as_hybrid_rnnt_large")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.freeze() # inference mode
model = model.to(device) # transfer model to device
```
Get an audio file ready by running the command shown below in your terminal. This will convert the audio to 16000 Hz and monochannel.
```
ffmpeg -i sample_audio.wav -ac 1 -ar 16000 sample_audio_infer_ready.wav
```
### Inference using CTC decoder
```
model.cur_decoder = "ctc"
ctc_text = model.transcribe(['sample_audio_infer_ready.wav'], batch_size=1,logprobs=False, language_id='as')[0]
print(ctc_text)
```
### Inference using RNNT decoder
```
model.cur_decoder = "rnnt"
rnnt_text = model.transcribe(['sample_audio_infer_ready.wav'], batch_size=1, language_id='as')[0]
print(rnnt_text)
```
|