File size: 5,149 Bytes
54ba44c a5a7e9b 54ba44c 9f54e38 54ba44c 9f54e38 54ba44c 9f54e38 54ba44c 562a3d3 54ba44c 9f54e38 54ba44c 9f54e38 54ba44c 9f54e38 54ba44c 9f54e38 54ba44c 9f54e38 54ba44c 9f54e38 54ba44c 9f54e38 54ba44c 9f54e38 54ba44c 9f54e38 54ba44c 9f54e38 54ba44c 9f54e38 54ba44c 9f54e38 54ba44c 9f54e38 54ba44c 9f54e38 54ba44c 9f54e38 54ba44c b13d56c 54ba44c 9f54e38 54ba44c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
---
library_name: transformers
tags:
- generated_from_trainer
- code
- coding
- llama-2
model-index:
- name: aiplanet/effi-13b
results: []
license: apache-2.0
language:
- code
datasets:
- kaist-ai/CoT-Collection
pipeline_tag: text-generation
---
# LlaMa 2 13b 4-bit Chain of Thought Reasoning 👩💻
**LlaMa-2 13b** fine-tuned on the **kaist-ai/CoT-Collection dataset** by using the method **QLoRA** in 4-bit with [PEFT](https://github.com/huggingface/peft) library.
## Pretrained description
[Llama-2](https://huggingface.co/meta-llama/Llama-2-13b)
Meta developed and publicly released the Llama 2 family of large language models (LLMs), a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters.
Model Architecture Llama 2 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align to human preferences for helpfulness and safety
## Training data
[kaist-ai/CoT-Collection](https://huggingface.co/datasets/kaist-ai/CoT-Collection)
### Qunatization Configuration
The following `bitsandbytes` quantization config was used during training:
- bits: 4
- group_size: 128
- dataset: "c4"
- desc_act: False
- tokenizer:tokeniaer
- device_map: "auto"
### Framework versions
- PEFT 0.4.0
### Training
```
Downloading (…)okenizer_config.json: 100%
725/725 [00:00<00:00, 118kB/s]
Downloading (…)/main/tokenizer.json: 100%
1.84M/1.84M [00:01<00:00, 1.45MB/s]
Downloading (…)cial_tokens_map.json: 100%
437/437 [00:00<00:00, 35.9kB/s]
/usr/local/lib/python3.10/dist-packages/transformers/models/auto/auto_factory.py:472: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.
warnings.warn(
Downloading (…)lve/main/config.json: 100%
631/631 [00:00<00:00, 53.8kB/s]
Downloading (…)/adapter_config.json: 100%
452/452 [00:00<00:00, 39.1kB/s]
Downloading (…)lve/main/config.json: 100%
587/587 [00:00<00:00, 50.1kB/s]
Downloading (…)fetensors.index.json: 100%
33.4k/33.4k [00:00<00:00, 2.97MB/s]
Downloading shards: 100%
3/3 [28:42<00:00, 546.82s/it]
Downloading (…)of-00003.safetensors: 100%
9.95G/9.95G [10:35<00:00, 15.3MB/s]
Downloading (…)of-00003.safetensors: 100%
9.90G/9.90G [11:04<00:00, 15.9MB/s]
Downloading (…)of-00003.safetensors: 100%
6.18G/6.18G [06:56<00:00, 14.5MB/s]
Loading checkpoint shards: 100%
3/3 [00:03<00:00, 1.01s/it]
/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py:374: FutureWarning: The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.
warnings.warn(
Downloading (…)neration_config.json: 100%
188/188 [00:00<00:00, 16.5kB/s]
Downloading readme: 100%
2.38k/2.38k [00:00<00:00, 162kB/s]
Repo card metadata block was not found. Setting CardData to empty.
Downloading data files: 100%
1/1 [00:42<00:00, 42.25s/it]
Downloading data: 100%
319M/319M [00:42<00:00, 6.57MB/s]
Extracting data files: 100%
1/1 [00:04<00:00, 4.02s/it]
Generating train split:
356317/0 [00:01<00:00, 224199.18 examples/s]
Quantizing model.layers blocks : 100%
40/40 [32:31<00:00, 50.21s/it]
CUDA extension not installed.
Downloading adapter_model.bin: 100%
26.3M/26.3M [00:03<00:00, 8.64MB/s]
```
### Example of usage
```py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "aiplanet/effi-13b-int4-GPTQ"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
tst = """Read the Instruction below and provide an answer the question asked.Stick to to theinstruction .Do not repeat the answers.
### INSTRUCTION:
Virgin Australia, the trading name of Virgin Australia Airlines Pty Ltd, is an Australian-based airline. It is the largest airline by fleet size to use the Virgin brand. It commenced services on 31 August 2000 as Virgin Blue, with two aircraft on a single route. It suddenly found itself as a major airline in Australia's domestic market after the collapse of Ansett Australia in September 2001. The airline has since grown to directly serve 32 cities in Australia, from hubs in Brisbane, Melbourne and Sydney.Is Virgin Australia and Virgin Blue the same airlines?
"""
#
prompt = f"[INST] <<SYS>>\n{system_message}\n<</SYS>>\n\n{tst}. [/INST]"
#
# Tokenize the input
input_ids = tokenizer(prompt, return_tensors="pt", truncation=True).input_ids.cuda()
# Run the model to infere an output
outputs = model.generate(input_ids=input_ids, max_new_tokens=100, do_sample=True, top_p=0.9,temperature=0.1)
# Print the result
print(f"Prompt:\n{prompt}\n")
print(f"Generated instruction:\n{tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)[0][len(prompt):].split(' [/INST]')[0]}")
```
### Citation
```
@misc {Plaban81,
author = { {Plaban Nayak} },
title = { Quantized version of effi-13b by AI Planet},
year = 2023,
url = { https://huggingface.co/aiplanet/effi-13b },
publisher = { Hugging Face }
}
``` |