File size: 28,083 Bytes
635e308
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
widget:
- source_sentence: We enter into forward currency contracts in order to hedge a portion
    of the foreign currency exposure associated with the translation of our net investment
    in our Canadian subsidiary.
  sentences:
  - How much did Delta Air Lines spend on debt and finance lease obligations in 2023?
  - What mechanisms does the company use to hedge foreign currency exposure for its
    Canadian subsidiary?
  - How did operating overhead expenses change for NIKE from fiscal 2022 to fiscal
    2023?
- source_sentence: We calculate return on invested hat capital (ROIC) by dividing
    adjusted ROIC operating profit for the prior four quarters by the average invested
    capital.
  sentences:
  - What was the fair value of U.S. government and agency securities as of June 30,
    2022?
  - How is the Return on Invested Capital (ROIC) calculated?
  - What business outcomes is HPE focused on accelerating with its technological solutions?
- source_sentence: Expenses from our comparable owned and leased hotels increased
    $137 million, on a currency neutral basis, as a result of increased occupancy
    and cost inflation both driving higher labor costs, utilities and other operating
    expenses, as well as an increase in rent expense.
  sentences:
  - How did the expenses from comparable owned and leased hotels change and what were
    the contributing factors?
  - What do environmental laws require from suppliers in terms of operations?
  - What energy management technologies does the Enphase bidirectional EV charger
    integrate with?
- source_sentence: The Advancing Agility & Automation Initiative at The Hershey Company
    is projected to result in total pre-tax costs of $200,000 to $250,000 from inception
    through 2026. This includes costs for program office execution and third-party
    costs supporting the design and implementation of the new organizational structure,
    as well as implementation and technology capability costs and employee severance
    and related separation benefits.
  sentences:
  - What was the total amortization expense for The Hershey Company in 2021?
  - How much did net cash used in financing activities decrease in fiscal 2023 compared
    to the previous fiscal year?
  - What is the total projected pre-tax cost of The Hershey Company's Advancing Agility
    & Automation Initiative through 2026?
- source_sentence: Structural costs typically do not have a directly proportionate
    relationship to production volume and include costs such as manufacturing, engineering,
    and administrative expenses. These costs can be adjusted over time in response
    to external factors.
  sentences:
  - How does Ford Motor Company handle its structural costs in relation to production
    volume changes?
  - What were the total future minimum lease payments under all non-cancelable operating
    leases for the company as of December 31, 2023?
  - What guidelines does the FASB provide for the measurement of fair value when quoted
    prices are not available?
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: BGE base Financial Matryoshka
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.72
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8257142857142857
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8585714285714285
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8942857142857142
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.72
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2752380952380953
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1717142857142857
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08942857142857143
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.72
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8257142857142857
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8585714285714285
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8942857142857142
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8077694527772951
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7800079365079364
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7837848752496734
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.7157142857142857
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8242857142857143
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8642857142857143
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8914285714285715
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7157142857142857
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2747619047619047
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17285714285714285
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08914285714285713
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7157142857142857
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8242857142857143
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8642857142857143
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8914285714285715
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.805259563189015
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7773735827664396
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7813006780341183
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.7028571428571428
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8171428571428572
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8542857142857143
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8814285714285715
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7028571428571428
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2723809523809524
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17085714285714285
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08814285714285712
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7028571428571428
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8171428571428572
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8542857142857143
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8814285714285715
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7945503213768784
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7664075963718817
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7709929668571353
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.6785714285714286
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8028571428571428
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8542857142857143
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8814285714285715
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6785714285714286
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.26761904761904765
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17085714285714285
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08814285714285712
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6785714285714286
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8028571428571428
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8542857142857143
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8814285714285715
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7829387132685872
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7509529478458048
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7549309056916426
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.6485714285714286
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.77
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8142857142857143
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8657142857142858
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6485714285714286
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2566666666666667
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.16285714285714287
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08657142857142856
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6485714285714286
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.77
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8142857142857143
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8657142857142858
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.755512484642688
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7203905895691608
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7247515061294347
      name: Cosine Map@100
---

# BGE base Financial Matryoshka

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - json
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("aired/bge-base-financial-matryoshka")
# Run inference
sentences = [
    'Structural costs typically do not have a directly proportionate relationship to production volume and include costs such as manufacturing, engineering, and administrative expenses. These costs can be adjusted over time in response to external factors.',
    'How does Ford Motor Company handle its structural costs in relation to production volume changes?',
    'What were the total future minimum lease payments under all non-cancelable operating leases for the company as of December 31, 2023?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | dim_768    | dim_512    | dim_256    | dim_128    | dim_64     |
|:--------------------|:-----------|:-----------|:-----------|:-----------|:-----------|
| cosine_accuracy@1   | 0.72       | 0.7157     | 0.7029     | 0.6786     | 0.6486     |
| cosine_accuracy@3   | 0.8257     | 0.8243     | 0.8171     | 0.8029     | 0.77       |
| cosine_accuracy@5   | 0.8586     | 0.8643     | 0.8543     | 0.8543     | 0.8143     |
| cosine_accuracy@10  | 0.8943     | 0.8914     | 0.8814     | 0.8814     | 0.8657     |
| cosine_precision@1  | 0.72       | 0.7157     | 0.7029     | 0.6786     | 0.6486     |
| cosine_precision@3  | 0.2752     | 0.2748     | 0.2724     | 0.2676     | 0.2567     |
| cosine_precision@5  | 0.1717     | 0.1729     | 0.1709     | 0.1709     | 0.1629     |
| cosine_precision@10 | 0.0894     | 0.0891     | 0.0881     | 0.0881     | 0.0866     |
| cosine_recall@1     | 0.72       | 0.7157     | 0.7029     | 0.6786     | 0.6486     |
| cosine_recall@3     | 0.8257     | 0.8243     | 0.8171     | 0.8029     | 0.77       |
| cosine_recall@5     | 0.8586     | 0.8643     | 0.8543     | 0.8543     | 0.8143     |
| cosine_recall@10    | 0.8943     | 0.8914     | 0.8814     | 0.8814     | 0.8657     |
| **cosine_ndcg@10**  | **0.8078** | **0.8053** | **0.7946** | **0.7829** | **0.7555** |
| cosine_mrr@10       | 0.78       | 0.7774     | 0.7664     | 0.751      | 0.7204     |
| cosine_map@100      | 0.7838     | 0.7813     | 0.771      | 0.7549     | 0.7248     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### json

* Dataset: json
* Size: 6,300 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
  |         | positive                                                                           | anchor                                                                            |
  |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                            |
  | details | <ul><li>min: 9 tokens</li><li>mean: 45.81 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 20.45 tokens</li><li>max: 42 tokens</li></ul> |
* Samples:
  | positive                                                                                                                                                                                                                                                                                                                                                                                                                            | anchor                                                                                                                      |
  |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------|
  | <code>GEICO markets its policies mainly by direct response methods where most customers apply for coverage directly to the company via the Internet or over the telephone.</code>                                                                                                                                                                                                                                                   | <code>What are the primary marketing methods used by GEICO?</code>                                                          |
  | <code>In addition, most group health plans and issuers of group or individual health insurance coverage are required to disclose personalized pricing information to their participants, beneficiaries, and enrollees through an online consumer tool, by phone, or in paper form, upon request. Cost estimates must be provided in real-time based on cost-sharing information that is accurate at the time of the request.</code> | <code>What are the requirements for health insurers and group health plans in providing cost estimates to consumers?</code> |
  | <code>Fair values of indefinite-lived intangible assets are determined based on the income approach.</code>                                                                                                                                                                                                                                                                                                                         | <code>What method is used to determine the fair value of indefinite-lived intangible assets?</code>                         |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `fp16`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch      | Step   | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
|:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
| 0.8122     | 10     | 1.6045        | -                      | -                      | -                      | -                      | -                     |
| 0.9746     | 12     | -             | 0.7895                 | 0.7895                 | 0.7764                 | 0.7680                 | 0.7277                |
| 1.6244     | 20     | 0.6975        | -                      | -                      | -                      | -                      | -                     |
| 1.9492     | 24     | -             | 0.8044                 | 0.8026                 | 0.7924                 | 0.7819                 | 0.7515                |
| 2.4365     | 30     | 0.4732        | -                      | -                      | -                      | -                      | -                     |
| 2.9239     | 36     | -             | 0.8064                 | 0.8060                 | 0.7944                 | 0.7825                 | 0.7549                |
| 3.2487     | 40     | 0.4182        | -                      | -                      | -                      | -                      | -                     |
| **3.8985** | **48** | **-**         | **0.8078**             | **0.8053**             | **0.7946**             | **0.7829**             | **0.7555**            |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 1.1.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->