File size: 5,753 Bytes
c3f82fd ad623db 0cab02d ad623db 7f6cb72 0cab02d c3f82fd ad623db b6a4440 ad623db 91f5a6d ad623db b6a4440 4e0afc1 ad623db 3526e49 ad623db 3526e49 ad623db 3526e49 ad623db 4e0afc1 ad623db 0cab02d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
---
language:
- en
license: cc-by-nc-nd-4.0
tags:
- code
datasets:
- ajibawa-2023/Code-74k-ShareGPT
model-index:
- name: Code-13B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 57.34
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-13B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 83.28
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-13B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 53.17
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-13B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 42.46
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-13B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 73.56
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-13B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 19.03
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-13B
name: Open LLM Leaderboard
---
**Code-13B**
Large Language Models (LLMs) are good with code generations. Sometimes they do make mistakes in code generation. How about if they can give detailed explanation along with the code.
This is what I have tried over here. The base Llama-2 model was used for training purpose. It is trained on around 74000 set of codes. Each set having 2 conversations.
Along with Python, Java, JavaScript, GO, C++, Rust etc. code with detailed explanation is used for training purpose. It is built upon using my existing Dataset [Python-Code-23k-ShareGPT](https://huggingface.co/datasets/ajibawa-2023/Python-Code-23k-ShareGPT).
This conversation is in Vicuna/ShareGPT format. Each set, along with code, has detailed explanation.
I have released the new data [Code-74k-ShareGPT](https://huggingface.co/datasets/ajibawa-2023/Code-74k-ShareGPT) on which this Model is trained.
**Training:**
Entire dataset was trained on Azure 4 x A100 80GB. For 3 epoch, training took 42 hours. DeepSpeed codebase was used for training purpose. This was trained on Llama-2 by Meta.
This is a full fine tuned model. Links for quantized models are given below.
**GPTQ GGUF & AWQ**
GPTQ: [Link](https://huggingface.co/TheBloke/Code-13B-GPTQ)
GGUF: [Link](https://huggingface.co/TheBloke/Code-13B-GGUF)
AWQ: [Link](https://huggingface.co/TheBloke/Code-13B-AWQ)
Extremely thankful to [TheBloke](https://huggingface.co/TheBloke) for making Quantized versions of model.
**Example Prompt:**
```
This is a conversation with your helpful AI assistant. AI assistant can generate Code in various Programming Languages along with necessary explanation.
Context
You are a helpful AI assistant.
USER: <prompt>
ASSISTANT:
```
You can modify above Prompt as per your requirement. I have used ShareGPT/Vicuna format v1.1 .
I want to say special Thanks to the Open Source community for helping & guiding me to better understand the AI/Model development.
Thank you for your love & support.
**Example Output**
1. Navier-Stokes Equation Solver
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64aea8ff67511bd3d965697b/jDvZDe3QdMj42ZsGbw1TU.png)
2. KSC Complexity
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64aea8ff67511bd3d965697b/K6ePWQElIfOROeQE5RIgK.png)
3. GO
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64aea8ff67511bd3d965697b/JFnzijyBqtkQJZyUCBrw0.png)
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ajibawa-2023__Code-13B)
| Metric |Value|
|---------------------------------|----:|
|Avg. |54.81|
|AI2 Reasoning Challenge (25-Shot)|57.34|
|HellaSwag (10-Shot) |83.28|
|MMLU (5-Shot) |53.17|
|TruthfulQA (0-shot) |42.46|
|Winogrande (5-shot) |73.56|
|GSM8k (5-shot) |19.03|
|