File size: 5,753 Bytes
c3f82fd
ad623db
 
0cab02d
ad623db
 
7f6cb72
 
0cab02d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3f82fd
ad623db
 
 
 
 
 
 
b6a4440
 
ad623db
 
 
91f5a6d
ad623db
b6a4440
4e0afc1
ad623db
 
 
 
3526e49
ad623db
3526e49
ad623db
3526e49
ad623db
4e0afc1
 
ad623db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0cab02d
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
---
language:
- en
license: cc-by-nc-nd-4.0
tags:
- code
datasets:
- ajibawa-2023/Code-74k-ShareGPT
model-index:
- name: Code-13B
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 57.34
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-13B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 83.28
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-13B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 53.17
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-13B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 42.46
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-13B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 73.56
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-13B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 19.03
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-13B
      name: Open LLM Leaderboard
---

**Code-13B**

Large Language Models (LLMs) are good with code generations. Sometimes they do make mistakes in code generation. How about if they can give detailed explanation along with the code.
This is what I have tried over here. The base Llama-2 model was used for training purpose. It is trained on around 74000 set of codes. Each set having 2 conversations.
Along with Python, Java, JavaScript, GO, C++, Rust etc. code with detailed explanation is used for training purpose. It is built upon using my existing Dataset [Python-Code-23k-ShareGPT](https://huggingface.co/datasets/ajibawa-2023/Python-Code-23k-ShareGPT).
This conversation is in Vicuna/ShareGPT format. Each set, along with code, has detailed explanation. 

I have released the new data [Code-74k-ShareGPT](https://huggingface.co/datasets/ajibawa-2023/Code-74k-ShareGPT) on which this Model is trained.

**Training:**

Entire dataset was trained on Azure 4 x A100 80GB. For 3 epoch, training took 42 hours. DeepSpeed codebase was used for training purpose. This was trained on Llama-2 by Meta.


This is a full fine tuned model. Links for quantized models are given below.


**GPTQ GGUF & AWQ**

GPTQ: [Link](https://huggingface.co/TheBloke/Code-13B-GPTQ)

GGUF: [Link](https://huggingface.co/TheBloke/Code-13B-GGUF)

AWQ: [Link](https://huggingface.co/TheBloke/Code-13B-AWQ)

Extremely thankful to [TheBloke](https://huggingface.co/TheBloke) for making Quantized versions of model.


**Example Prompt:**
```
This is a conversation with your helpful AI assistant. AI assistant can generate Code in various Programming Languages along with necessary explanation.

Context
You are a helpful AI assistant.

USER: <prompt>
ASSISTANT:
```

You can modify above Prompt as per your requirement. I have used ShareGPT/Vicuna format v1.1 .

I want to say special Thanks to the Open Source community for helping & guiding me to better understand the AI/Model development.

Thank you for your love & support.

**Example Output**

1. Navier-Stokes Equation Solver


![image/png](https://cdn-uploads.huggingface.co/production/uploads/64aea8ff67511bd3d965697b/jDvZDe3QdMj42ZsGbw1TU.png)


2. KSC Complexity


![image/png](https://cdn-uploads.huggingface.co/production/uploads/64aea8ff67511bd3d965697b/K6ePWQElIfOROeQE5RIgK.png)


3. GO 


![image/png](https://cdn-uploads.huggingface.co/production/uploads/64aea8ff67511bd3d965697b/JFnzijyBqtkQJZyUCBrw0.png)
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ajibawa-2023__Code-13B)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |54.81|
|AI2 Reasoning Challenge (25-Shot)|57.34|
|HellaSwag (10-Shot)              |83.28|
|MMLU (5-Shot)                    |53.17|
|TruthfulQA (0-shot)              |42.46|
|Winogrande (5-shot)              |73.56|
|GSM8k (5-shot)                   |19.03|