File size: 5,449 Bytes
f871a38
 
 
a2e4cc7
f871a38
 
a2e4cc7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7975ef
 
 
ef8a263
9033c19
 
 
 
 
 
 
 
 
 
a9a0c98
 
 
 
 
 
 
 
4ef5698
 
9033c19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2e4cc7
e4a8296
 
a2e4cc7
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
---
language:
- en
license: other
tags:
- code
datasets:
- ajibawa-2023/Code-290k-ShareGPT
model-index:
- name: Code-290k-6.7B-Instruct
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 34.9
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-290k-6.7B-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 51.99
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-290k-6.7B-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 34.89
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-290k-6.7B-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 41.95
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-290k-6.7B-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 52.64
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-290k-6.7B-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 3.49
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-290k-6.7B-Instruct
      name: Open LLM Leaderboard
---

**Code-290k-6.7B-Instruct**

This model is trained on [DeepSeek-Coder-6.7B-Instruct](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct). I have used my existing dataset [Code-290k-ShareGPT](https://huggingface.co/datasets/ajibawa-2023/Code-290k-ShareGPT) for training purpose.
It is trained on around 290000 set of codes. Along with Python, Java, JavaScript, GO, C++, Rust, Ruby, Sql, MySql, R, Julia, Haskell, etc. code with detailed explanation is used for training purpose. 
This model utilises Alpaca format. Besides code generation it will also give you explanation. 

**Training:**

Entire dataset was trained on 4 x A100 80GB. For 3 epoch, training took 85 hours. DeepSeek-Coder codebase and DeepSpeed was used for training purpose.

This is a full fine tuned model.

Links for quantized models are given below.

**Exllama**

Exllama v2:[Link](https://huggingface.co/bartowski/Code-290k-6.7B-Instruct-exl2)

Extremely thankful to [Bartowski](https://huggingface.co/bartowski) for making Quantized version of the model.


**Example Prompt**:

```
This is a conversation with your helpful AI assistant. AI assistant can generate Code in various Programming Languages along with necessary explanation.

### Instruction:
{instruction}

### Response:
```
You can modify above Prompt as per your requirement. I have used Alpaca format.

I want to say special Thanks to the Open Source community for helping & guiding me to better understand the AI/Model development.

Thank you for your love & support.

**Examples** 

1. **Bayes Theorem - Python**


![image/png](https://cdn-uploads.huggingface.co/production/uploads/64aea8ff67511bd3d965697b/J8uqoT_LYhPW2VpnE1K-8.png)

2. **Fermat's little theorem**

![image/png](https://cdn-uploads.huggingface.co/production/uploads/64aea8ff67511bd3d965697b/H0sc9jk7ypv_N5V7LSANl.png)

3. **The Arrhenius equation using R**

![image/png](https://cdn-uploads.huggingface.co/production/uploads/64aea8ff67511bd3d965697b/BQ8PZhYhoZ9wpVMPXJPnQ.png)


# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ajibawa-2023__Code-290k-6.7B-Instruct)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |36.64|
|AI2 Reasoning Challenge (25-Shot)|34.90|
|HellaSwag (10-Shot)              |51.99|
|MMLU (5-Shot)                    |34.89|
|TruthfulQA (0-shot)              |41.95|
|Winogrande (5-shot)              |52.64|
|GSM8k (5-shot)                   | 3.49|