File size: 5,449 Bytes
f871a38 a2e4cc7 f871a38 a2e4cc7 b7975ef ef8a263 9033c19 a9a0c98 4ef5698 9033c19 a2e4cc7 e4a8296 a2e4cc7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
---
language:
- en
license: other
tags:
- code
datasets:
- ajibawa-2023/Code-290k-ShareGPT
model-index:
- name: Code-290k-6.7B-Instruct
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 34.9
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-290k-6.7B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 51.99
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-290k-6.7B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 34.89
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-290k-6.7B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 41.95
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-290k-6.7B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 52.64
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-290k-6.7B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 3.49
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-290k-6.7B-Instruct
name: Open LLM Leaderboard
---
**Code-290k-6.7B-Instruct**
This model is trained on [DeepSeek-Coder-6.7B-Instruct](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct). I have used my existing dataset [Code-290k-ShareGPT](https://huggingface.co/datasets/ajibawa-2023/Code-290k-ShareGPT) for training purpose.
It is trained on around 290000 set of codes. Along with Python, Java, JavaScript, GO, C++, Rust, Ruby, Sql, MySql, R, Julia, Haskell, etc. code with detailed explanation is used for training purpose.
This model utilises Alpaca format. Besides code generation it will also give you explanation.
**Training:**
Entire dataset was trained on 4 x A100 80GB. For 3 epoch, training took 85 hours. DeepSeek-Coder codebase and DeepSpeed was used for training purpose.
This is a full fine tuned model.
Links for quantized models are given below.
**Exllama**
Exllama v2:[Link](https://huggingface.co/bartowski/Code-290k-6.7B-Instruct-exl2)
Extremely thankful to [Bartowski](https://huggingface.co/bartowski) for making Quantized version of the model.
**Example Prompt**:
```
This is a conversation with your helpful AI assistant. AI assistant can generate Code in various Programming Languages along with necessary explanation.
### Instruction:
{instruction}
### Response:
```
You can modify above Prompt as per your requirement. I have used Alpaca format.
I want to say special Thanks to the Open Source community for helping & guiding me to better understand the AI/Model development.
Thank you for your love & support.
**Examples**
1. **Bayes Theorem - Python**
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64aea8ff67511bd3d965697b/J8uqoT_LYhPW2VpnE1K-8.png)
2. **Fermat's little theorem**
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64aea8ff67511bd3d965697b/H0sc9jk7ypv_N5V7LSANl.png)
3. **The Arrhenius equation using R**
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64aea8ff67511bd3d965697b/BQ8PZhYhoZ9wpVMPXJPnQ.png)
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ajibawa-2023__Code-290k-6.7B-Instruct)
| Metric |Value|
|---------------------------------|----:|
|Avg. |36.64|
|AI2 Reasoning Challenge (25-Shot)|34.90|
|HellaSwag (10-Shot) |51.99|
|MMLU (5-Shot) |34.89|
|TruthfulQA (0-shot) |41.95|
|Winogrande (5-shot) |52.64|
|GSM8k (5-shot) | 3.49|
|