File size: 5,726 Bytes
3e81165 351e24d 3e81165 351e24d 5e68bb2 351e24d 3e81165 5e68bb2 3e7e28c dbdc18a 3e7e28c 5e68bb2 3e7e28c 5e68bb2 3e7e28c 5e68bb2 994e9a2 df2ef4a 5e68bb2 b9458a7 5e68bb2 ed3b9ad 5e68bb2 351e24d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
---
language:
- en
license: apache-2.0
tags:
- code
- mathematics
datasets:
- ajibawa-2023/Code-290k-ShareGPT
- m-a-p/Code-Feedback
- microsoft/orca-math-word-problems-200k
- teknium/openhermes
model-index:
- name: Code-Mistral-7B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 64.59
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-Mistral-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 85.29
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-Mistral-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 65.0
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-Mistral-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 54.64
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-Mistral-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 82.24
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-Mistral-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 68.08
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ajibawa-2023/Code-Mistral-7B
name: Open LLM Leaderboard
---
**Code-Mistral-7B**
This Model is trained on refined version of my dataset [Code-290k-ShareGPT](https://huggingface.co/datasets/ajibawa-2023/Code-290k-ShareGPT).
Besides this it is trained on following datasets:
[Code-Feedback](https://huggingface.co/datasets/m-a-p/Code-Feedback)
[orca-math-word-problems-200k](https://huggingface.co/datasets/microsoft/orca-math-word-problems-200k)
[Openhermes](https://huggingface.co/datasets/teknium/openhermes)
The idea was to check how this Model will perform with both Code & Maths datasets. This model is very good with Coding.
Maths is still hit & miss but you can test out this model.
This Model is trained on massive datasets so the results are very good.
I have used ChatML prompt format.
Kindly note this is qLoRA version, a rare exception.
**GGUF & Exllama**
GGUF: [Link](https://huggingface.co/bartowski/Code-Mistral-7B-GGUF)
Exllama v2: [Link](https://huggingface.co/bartowski/Code-Mistral-7B-exl2)
Special Thanks to [Bartowski](https://huggingface.co/bartowski) for quantizing this model.
**Training:**
Entire dataset was trained on 4 x A100 80GB. For 3 epoch, training took almost 33 Hours. Axolotl codebase was used for training purpose.
Entire data is trained on Mistral.
**Example Prompt:**
This model uses **ChatML** prompt format.
```
<|im_start|>system
You are a helpful AI assistant.<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
```
You can modify above Prompt as per your requirement.
I want to say special Thanks to the Open Source community for helping & guiding me to better understand the AI/Model development.
Thank you for your love & support.
**Example Output**
**C++**
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/64aea8ff67511bd3d965697b/jcmEZSRX7s7-B_ZybWwwN.jpeg)
**Error Resolving**
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/64aea8ff67511bd3d965697b/iy89IxjiZXAY4Id-ieLg7.jpeg)
**Matrices**
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/64aea8ff67511bd3d965697b/zFfq9lBA63wQzy0tP3_hd.jpeg)
**Machine Learning**
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/64aea8ff67511bd3d965697b/Nv8dCpNxRtJGkOuulKzmn.jpeg)
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ajibawa-2023__Code-Mistral-7B)
| Metric |Value|
|---------------------------------|----:|
|Avg. |69.97|
|AI2 Reasoning Challenge (25-Shot)|64.59|
|HellaSwag (10-Shot) |85.29|
|MMLU (5-Shot) |65.00|
|TruthfulQA (0-shot) |54.64|
|Winogrande (5-shot) |82.24|
|GSM8k (5-shot) |68.08|
|