akridge commited on
Commit
dfb3c8f
·
verified ·
1 Parent(s): f6f4e93

Upload 30 files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ train/weights/best.torchscript filter=lfs diff=lfs merge=lfs -text
train/F1_curve.png ADDED
train/PR_curve.png ADDED
train/P_curve.png ADDED
train/R_curve.png ADDED
train/args.yaml ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ task: detect
2
+ mode: train
3
+ model: yolo11m.pt
4
+ data: O:\OTHER\AI_DATASETS\yolo\datasets\urchin_datasetv2\split_dataset\data.yaml
5
+ epochs: 100
6
+ time: null
7
+ patience: 10
8
+ batch: 32
9
+ imgsz: 640
10
+ save: true
11
+ save_period: 10
12
+ cache: false
13
+ device: cuda
14
+ workers: 8
15
+ project: training_logs
16
+ name: train
17
+ exist_ok: false
18
+ pretrained: true
19
+ optimizer: AdamW
20
+ verbose: true
21
+ seed: 0
22
+ deterministic: true
23
+ single_cls: false
24
+ rect: false
25
+ cos_lr: true
26
+ close_mosaic: 10
27
+ resume: false
28
+ amp: true
29
+ fraction: 1.0
30
+ profile: false
31
+ freeze: null
32
+ multi_scale: false
33
+ overlap_mask: true
34
+ mask_ratio: 4
35
+ dropout: 0.0
36
+ val: true
37
+ split: val
38
+ save_json: false
39
+ save_hybrid: false
40
+ conf: null
41
+ iou: 0.7
42
+ max_det: 300
43
+ half: false
44
+ dnn: false
45
+ plots: true
46
+ source: null
47
+ vid_stride: 1
48
+ stream_buffer: false
49
+ visualize: false
50
+ augment: true
51
+ agnostic_nms: false
52
+ classes: null
53
+ retina_masks: false
54
+ embed: null
55
+ show: false
56
+ save_frames: false
57
+ save_txt: false
58
+ save_conf: false
59
+ save_crop: false
60
+ show_labels: true
61
+ show_conf: true
62
+ show_boxes: true
63
+ line_width: null
64
+ format: torchscript
65
+ keras: false
66
+ optimize: false
67
+ int8: false
68
+ dynamic: false
69
+ simplify: true
70
+ opset: null
71
+ workspace: 4
72
+ nms: false
73
+ lr0: 0.001
74
+ lrf: 0.0001
75
+ momentum: 0.937
76
+ weight_decay: 0.0005
77
+ warmup_epochs: 3.0
78
+ warmup_momentum: 0.8
79
+ warmup_bias_lr: 0.1
80
+ box: 7.5
81
+ cls: 0.5
82
+ dfl: 1.5
83
+ pose: 12.0
84
+ kobj: 1.0
85
+ label_smoothing: 0.0
86
+ nbs: 64
87
+ hsv_h: 0.015
88
+ hsv_s: 0.7
89
+ hsv_v: 0.4
90
+ degrees: 0.0
91
+ translate: 0.1
92
+ scale: 0.5
93
+ shear: 0.0
94
+ perspective: 0.0
95
+ flipud: 0.0
96
+ fliplr: 0.5
97
+ bgr: 0.0
98
+ mosaic: true
99
+ mixup: true
100
+ copy_paste: 0.0
101
+ copy_paste_mode: flip
102
+ auto_augment: randaugment
103
+ erasing: 0.4
104
+ crop_fraction: 1.0
105
+ cfg: null
106
+ tracker: botsort.yaml
107
+ save_dir: training_logs\train
train/confusion_matrix.png ADDED
train/confusion_matrix_normalized.png ADDED
train/labels.jpg ADDED
train/labels_correlogram.jpg ADDED
train/results.csv ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ epoch,time,train/box_loss,train/cls_loss,train/dfl_loss,metrics/precision(B),metrics/recall(B),metrics/mAP50(B),metrics/mAP50-95(B),val/box_loss,val/cls_loss,val/dfl_loss,lr/pg0,lr/pg1,lr/pg2
2
+ 1,39.9058,1.96447,2.04901,2.1708,0.414,0.40805,0.31957,0.10862,2.21667,5.01382,3.39114,0.0678919,0.000324324,0.000324324
3
+ 2,67.1991,1.74033,1.59953,1.92945,0.30972,0.32759,0.2833,0.12004,2.32532,34.4803,3.43695,0.0348917,0.000657495,0.000657495
4
+ 3,91.6917,1.72275,1.57313,1.91896,0.16158,0.14655,0.08722,0.03155,2.33368,16.8685,3.24926,0.00189091,0.000990013,0.000990013
5
+ 4,114.254,1.72195,1.56371,1.91584,0.27254,0.28448,0.21746,0.08835,2.34932,16.8955,3.0468,0.000997781,0.000997781,0.000997781
6
+ 5,137.415,1.67082,1.53995,1.89658,0.29312,0.34793,0.23886,0.09054,2.43788,26.6153,3.07938,0.000996058,0.000996058,0.000996058
7
+ 6,160.86,1.6562,1.47434,1.85547,0.54615,0.51006,0.50823,0.22441,1.9897,23.4631,2.47451,0.000993845,0.000993845,0.000993845
8
+ 7,185.109,1.6259,1.43232,1.84162,0.43991,0.40661,0.38107,0.16274,1.9519,13.5073,2.27658,0.000991145,0.000991145,0.000991145
9
+ 8,208.517,1.57969,1.38325,1.7967,0.63088,0.49569,0.54052,0.27282,1.67106,9.40404,2.13012,0.00098796,0.00098796,0.00098796
10
+ 9,233.464,1.59354,1.35296,1.7884,0.68891,0.54598,0.6284,0.33017,1.57252,5.26121,1.9309,0.000984293,0.000984293,0.000984293
11
+ 10,257.826,1.56466,1.31983,1.77991,0.54173,0.5273,0.52801,0.26752,1.67775,5.09949,2.17611,0.000980149,0.000980149,0.000980149
12
+ 11,280.124,1.55283,1.30161,1.77377,0.66308,0.56897,0.59743,0.29105,1.7102,3.30935,2.14128,0.000975531,0.000975531,0.000975531
13
+ 12,304.769,1.52272,1.26399,1.74914,0.8104,0.66092,0.75381,0.40461,1.51554,2.57184,1.88051,0.000970443,0.000970443,0.000970443
14
+ 13,329.088,1.51704,1.28675,1.75951,0.79333,0.65634,0.75504,0.40896,1.47537,3.44177,1.82203,0.000964892,0.000964892,0.000964892
15
+ 14,353.074,1.48176,1.25374,1.73477,0.7314,0.65517,0.70579,0.40558,1.44893,2.11268,1.83402,0.000958881,0.000958881,0.000958881
16
+ 15,375.618,1.52342,1.25091,1.75882,0.61545,0.58477,0.61672,0.33028,1.5932,4.15626,1.99363,0.000952418,0.000952418,0.000952418
17
+ 16,398.361,1.52664,1.22967,1.72988,0.55508,0.53592,0.51486,0.26773,1.43942,7.42985,1.79353,0.000945509,0.000945509,0.000945509
18
+ 17,420.541,1.49225,1.23058,1.72652,0.72637,0.64368,0.70288,0.38483,1.51916,2.33918,1.83336,0.00093816,0.00093816,0.00093816
19
+ 18,443.151,1.45472,1.21049,1.69743,0.77287,0.70404,0.75642,0.43283,1.44472,2.25712,1.77893,0.000930378,0.000930378,0.000930378
20
+ 19,467.225,1.50237,1.21969,1.70716,0.72698,0.60063,0.69026,0.37535,1.52963,2.73989,1.86944,0.000922172,0.000922172,0.000922172
21
+ 20,489.734,1.48454,1.21078,1.6933,0.70677,0.6408,0.70956,0.40976,1.44679,1.42927,1.76232,0.000913549,0.000913549,0.000913549
22
+ 21,512.169,1.45448,1.1704,1.68381,0.73584,0.67672,0.74166,0.40092,1.4832,3.54705,1.79574,0.000904518,0.000904518,0.000904518
23
+ 22,536.224,1.46802,1.15474,1.69537,0.76454,0.71378,0.79908,0.45841,1.38044,1.59393,1.72696,0.000895088,0.000895088,0.000895088
24
+ 23,560.448,1.46285,1.17513,1.70038,0.64633,0.66169,0.68082,0.38573,1.44508,2.21655,1.83624,0.000885268,0.000885268,0.000885268
25
+ 24,583.067,1.44587,1.16773,1.68865,0.78023,0.67529,0.75824,0.43377,1.45043,3.806,1.78812,0.000875068,0.000875068,0.000875068
26
+ 25,605.32,1.43293,1.12945,1.66684,0.76685,0.68822,0.74096,0.40162,1.49645,1.75937,1.8389,0.000864498,0.000864498,0.000864498
27
+ 26,628.044,1.42075,1.12186,1.66553,0.75773,0.69109,0.75108,0.42257,1.43882,2.71837,1.78106,0.000853568,0.000853568,0.000853568
28
+ 27,650.295,1.42926,1.10539,1.65859,0.826,0.76149,0.83142,0.48473,1.36593,1.51234,1.69526,0.000842289,0.000842289,0.000842289
29
+ 28,674.701,1.38955,1.09276,1.63989,0.67198,0.66092,0.70387,0.39836,1.48629,1.28995,1.84815,0.000830673,0.000830673,0.000830673
30
+ 29,696.823,1.40544,1.08543,1.6538,0.83969,0.73752,0.8156,0.4774,1.34559,1.13182,1.69417,0.00081873,0.00081873,0.00081873
31
+ 30,719.13,1.41483,1.09865,1.65289,0.8046,0.71408,0.80223,0.46882,1.37373,1.40703,1.72666,0.000806473,0.000806473,0.000806473
32
+ 31,741.468,1.38731,1.07804,1.64148,0.8165,0.72989,0.81992,0.48381,1.36251,1.4009,1.6928,0.000793913,0.000793913,0.000793913
33
+ 32,766.026,1.3916,1.07766,1.64858,0.80326,0.6954,0.78244,0.44625,1.43441,1.26048,1.76821,0.000781064,0.000781064,0.000781064
34
+ 33,788.321,1.39942,1.09333,1.64461,0.74669,0.73694,0.77688,0.45036,1.42942,1.57985,1.78914,0.000767937,0.000767937,0.000767937
35
+ 34,810.581,1.39987,1.06059,1.64607,0.75988,0.71838,0.77853,0.44198,1.46233,1.2851,1.79255,0.000754545,0.000754545,0.000754545
36
+ 35,832.645,1.35177,1.03882,1.60848,0.83711,0.74575,0.82053,0.49192,1.37613,0.9911,1.70091,0.000740903,0.000740903,0.000740903
37
+ 36,856.475,1.37815,1.0522,1.61917,0.80562,0.74433,0.82085,0.4829,1.35738,1.3395,1.69744,0.000727023,0.000727023,0.000727023
38
+ 37,878.546,1.36488,1.04066,1.61008,0.81594,0.72989,0.82308,0.49819,1.34468,1.13598,1.67069,0.000712918,0.000712918,0.000712918
39
+ 38,902.245,1.34865,1.0027,1.6096,0.80822,0.70846,0.78857,0.4734,1.36055,1.05431,1.71895,0.000698604,0.000698604,0.000698604
40
+ 39,924.486,1.36404,1.03412,1.61081,0.80739,0.76724,0.83247,0.50535,1.29845,1.11193,1.6314,0.000684094,0.000684094,0.000684094
41
+ 40,948.418,1.3458,1.01798,1.60797,0.74989,0.73233,0.78275,0.46484,1.36468,1.17855,1.71995,0.000669402,0.000669402,0.000669402
42
+ 41,970.652,1.34451,1.01644,1.59692,0.81849,0.70546,0.79222,0.47251,1.3181,1.70239,1.68005,0.000654543,0.000654543,0.000654543
43
+ 42,994.409,1.32783,1.0066,1.60113,0.81324,0.75431,0.83093,0.50058,1.29745,0.933,1.63626,0.000639532,0.000639532,0.000639532
44
+ 43,1016.66,1.3231,0.98219,1.59417,0.84719,0.75575,0.85394,0.51782,1.32427,0.9926,1.6502,0.000624383,0.000624383,0.000624383
45
+ 44,1040.38,1.35276,1.01175,1.60215,0.84117,0.73809,0.83855,0.50611,1.29447,1.06355,1.62121,0.000609111,0.000609111,0.000609111
46
+ 45,1062.45,1.34611,0.99188,1.58613,0.85368,0.76281,0.84268,0.51284,1.29287,1.04725,1.62132,0.000593731,0.000593731,0.000593731
47
+ 46,1084.68,1.31412,0.98479,1.57659,0.76562,0.72746,0.7833,0.46618,1.34743,1.31482,1.68308,0.000578259,0.000578259,0.000578259
48
+ 47,1106.67,1.31068,0.97449,1.57949,0.83399,0.74347,0.83234,0.51448,1.25981,0.9516,1.62093,0.00056271,0.00056271,0.00056271
49
+ 48,1128.74,1.28513,0.96098,1.57653,0.79831,0.72414,0.80073,0.48595,1.3094,1.23365,1.67091,0.000547099,0.000547099,0.000547099
50
+ 49,1150.83,1.29665,0.95738,1.57558,0.83509,0.78736,0.85553,0.5203,1.27712,0.84125,1.61417,0.000531442,0.000531442,0.000531442
51
+ 50,1174.76,1.31226,0.95245,1.57992,0.82585,0.78161,0.84728,0.50805,1.30726,1.02443,1.64954,0.000515754,0.000515754,0.000515754
52
+ 51,1196.69,1.28493,0.9407,1.55904,0.84192,0.74425,0.83636,0.50542,1.30188,0.98141,1.63755,0.00050005,0.00050005,0.00050005
53
+ 52,1220.6,1.30912,0.96064,1.57441,0.83468,0.75718,0.84753,0.51344,1.29736,0.94088,1.62136,0.000484346,0.000484346,0.000484346
54
+ 53,1242.64,1.30637,0.94137,1.56739,0.81394,0.76437,0.84356,0.50481,1.30779,1.0349,1.63968,0.000468658,0.000468658,0.000468658
55
+ 54,1264.67,1.28637,0.93961,1.5621,0.85176,0.77599,0.85744,0.52737,1.26362,0.86099,1.59402,0.000453001,0.000453001,0.000453001
56
+ 55,1288.47,1.27894,0.94315,1.56452,0.86362,0.76868,0.85477,0.53063,1.27552,0.78173,1.59822,0.00043739,0.00043739,0.00043739
57
+ 56,1312.39,1.28484,0.93466,1.56139,0.83645,0.78161,0.85452,0.52469,1.27457,0.93494,1.6098,0.000421841,0.000421841,0.000421841
58
+ 57,1334.57,1.27414,0.93468,1.55607,0.8464,0.76799,0.84786,0.52075,1.28469,0.82972,1.63059,0.000406369,0.000406369,0.000406369
59
+ 58,1357.12,1.28052,0.92945,1.55642,0.83595,0.76144,0.8401,0.51078,1.30154,0.88763,1.65412,0.000390989,0.000390989,0.000390989
60
+ 59,1379.27,1.27683,0.91666,1.54411,0.79544,0.78216,0.82764,0.50411,1.28114,1.10257,1.61236,0.000375717,0.000375717,0.000375717
61
+ 60,1401.45,1.26371,0.91776,1.53082,0.83257,0.80732,0.85484,0.53513,1.24639,0.78569,1.58031,0.000360568,0.000360568,0.000360568
62
+ 61,1425.33,1.24402,0.89296,1.53082,0.84849,0.7773,0.85084,0.52413,1.28492,0.80698,1.60103,0.000345557,0.000345557,0.000345557
63
+ 62,1449.54,1.22845,0.87747,1.5318,0.82098,0.77011,0.84439,0.52312,1.26833,0.90105,1.60149,0.000330698,0.000330698,0.000330698
64
+ 63,1471.79,1.26996,0.90257,1.5361,0.83796,0.81034,0.86758,0.53862,1.24787,0.86926,1.59071,0.000316006,0.000316006,0.000316006
65
+ 64,1495.68,1.24784,0.89818,1.53197,0.85963,0.77431,0.85738,0.51866,1.2557,0.86068,1.60125,0.000301496,0.000301496,0.000301496
66
+ 65,1517.73,1.25266,0.8989,1.52358,0.85829,0.78879,0.86353,0.52885,1.26889,1.05233,1.59662,0.000287182,0.000287182,0.000287182
67
+ 66,1540.09,1.23536,0.87119,1.51083,0.84604,0.75287,0.8467,0.52545,1.24718,0.87181,1.59416,0.000273077,0.000273077,0.000273077
68
+ 67,1561.89,1.21,0.86507,1.50726,0.83774,0.77586,0.86501,0.53886,1.24159,0.79614,1.5652,0.000259197,0.000259197,0.000259197
69
+ 68,1584.12,1.21962,0.86517,1.50502,0.84221,0.77874,0.85842,0.52221,1.25969,0.82132,1.58557,0.000245555,0.000245555,0.000245555
70
+ 69,1605.89,1.21052,0.85572,1.50393,0.82981,0.80564,0.874,0.54413,1.22541,0.75729,1.5525,0.000232163,0.000232163,0.000232163
71
+ 70,1629.65,1.20918,0.84421,1.49898,0.85547,0.77443,0.86652,0.5334,1.25691,0.81601,1.58293,0.000219036,0.000219036,0.000219036
72
+ 71,1651.76,1.21473,0.86137,1.51054,0.85869,0.79454,0.86915,0.544,1.22514,0.8142,1.54975,0.000206187,0.000206187,0.000206187
73
+ 72,1676.09,1.22435,0.8574,1.5019,0.83473,0.79099,0.85885,0.5358,1.2335,0.91976,1.56059,0.000193627,0.000193627,0.000193627
74
+ 73,1698.28,1.22346,0.85705,1.50283,0.8432,0.78879,0.86445,0.53083,1.26666,0.84932,1.58876,0.00018137,0.00018137,0.00018137
75
+ 74,1720.67,1.19055,0.84102,1.5012,0.83299,0.80261,0.86586,0.53769,1.23297,0.74864,1.5637,0.000169427,0.000169427,0.000169427
76
+ 75,1742.89,1.19284,0.83217,1.49252,0.83324,0.80408,0.8653,0.53308,1.24107,0.77889,1.57116,0.000157811,0.000157811,0.000157811
77
+ 76,1765.23,1.19949,0.83713,1.50137,0.84052,0.79598,0.86361,0.53249,1.24612,0.80912,1.57262,0.000146532,0.000146532,0.000146532
78
+ 77,1787.06,1.16587,0.80832,1.484,0.86353,0.7931,0.86918,0.54116,1.22938,0.7419,1.56947,0.000135602,0.000135602,0.000135602
79
+ 78,1809.7,1.18405,0.82636,1.47507,0.86018,0.79454,0.87347,0.54331,1.22376,0.75735,1.55413,0.000125032,0.000125032,0.000125032
80
+ 79,1831.65,1.17872,0.82119,1.48386,0.85486,0.79885,0.86958,0.54415,1.21595,0.76882,1.54784,0.000114832,0.000114832,0.000114832
train/results.png ADDED
train/train_batch0.jpg ADDED
train/train_batch1.jpg ADDED
train/train_batch2.jpg ADDED
train/val_batch0_labels.jpg ADDED
train/val_batch0_pred.jpg ADDED
train/val_batch1_labels.jpg ADDED
train/val_batch1_pred.jpg ADDED
train/val_batch2_labels.jpg ADDED
train/val_batch2_pred.jpg ADDED
train/weights/best.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5668ee97fa2c06ddffe7198dcbd5b3a072889736ae6f71cd906985fcc14f849d
3
+ size 80401757
train/weights/best.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5966e0a2b3b089494c46b178129114b8cb67df1c294134e48f0bdd65b9b8f3b8
3
+ size 40517285
train/weights/best.torchscript ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3ed5a7d3931eb475ebd562c4f80db9708fa6d552833da66131811348d226bfc6
3
+ size 80867482
train/weights/best_ncnn_model/metadata.yaml ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ description: Ultralytics YOLO11m model trained on O:\OTHER\AI_DATASETS\yolo\datasets\urchin_datasetv2\split_dataset\data.yaml
2
+ author: Ultralytics
3
+ date: '2024-10-21T14:05:16.912634'
4
+ version: 8.3.17
5
+ license: AGPL-3.0 License (https://ultralytics.com/license)
6
+ docs: https://docs.ultralytics.com
7
+ stride: 32
8
+ task: detect
9
+ batch: 1
10
+ imgsz:
11
+ - 640
12
+ - 640
13
+ names:
14
+ 0: urchin
train/weights/best_ncnn_model/model.ncnn.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:57837a4ef07574788b7563b2ebf1888c0c9e8b0042bf1d2b7e36239dd34a8f5b
3
+ size 80291664
train/weights/best_ncnn_model/model.ncnn.param ADDED
@@ -0,0 +1,347 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 7767517
2
+ 345 407
3
+ Input in0 0 1 in0
4
+ Convolution conv_0 1 1 in0 1 0=64 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=1728
5
+ Swish silu_109 1 1 1 2
6
+ Convolution conv_1 1 1 2 3 0=128 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=73728
7
+ Swish silu_110 1 1 3 4
8
+ Convolution conv_2 1 1 4 5 0=128 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=16384
9
+ Swish silu_111 1 1 5 6
10
+ Slice split_0 1 2 6 7 8 -23300=2,64,64 1=0
11
+ Split splitncnn_0 1 3 8 9 10 11
12
+ Convolution conv_3 1 1 11 12 0=32 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2048
13
+ Swish silu_112 1 1 12 13
14
+ Split splitncnn_1 1 2 13 14 15
15
+ Convolution conv_4 1 1 15 16 0=32 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=9216
16
+ Swish silu_113 1 1 16 17
17
+ Convolution conv_5 1 1 17 18 0=32 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=9216
18
+ Swish silu_114 1 1 18 19
19
+ BinaryOp add_0 2 1 14 19 20 0=0
20
+ Split splitncnn_2 1 2 20 21 22
21
+ Convolution conv_6 1 1 22 23 0=32 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=9216
22
+ Swish silu_115 1 1 23 24
23
+ Convolution conv_7 1 1 24 25 0=32 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=9216
24
+ Swish silu_116 1 1 25 26
25
+ BinaryOp add_1 2 1 21 26 27 0=0
26
+ Convolution conv_8 1 1 10 28 0=32 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=2048
27
+ Swish silu_117 1 1 28 29
28
+ Concat cat_0 2 1 27 29 30 0=0
29
+ Convolution conv_9 1 1 30 31 0=64 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=4096
30
+ Swish silu_118 1 1 31 32
31
+ Concat cat_1 3 1 7 9 32 33 0=0
32
+ Convolution conv_10 1 1 33 34 0=256 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=49152
33
+ Swish silu_119 1 1 34 35
34
+ Convolution conv_11 1 1 35 36 0=256 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=589824
35
+ Swish silu_120 1 1 36 37
36
+ Convolution conv_12 1 1 37 38 0=256 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=65536
37
+ Swish silu_121 1 1 38 39
38
+ Slice split_1 1 2 39 40 41 -23300=2,128,128 1=0
39
+ Split splitncnn_3 1 3 41 42 43 44
40
+ Convolution conv_13 1 1 44 45 0=64 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=8192
41
+ Swish silu_122 1 1 45 46
42
+ Split splitncnn_4 1 2 46 47 48
43
+ Convolution conv_14 1 1 48 49 0=64 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=36864
44
+ Swish silu_123 1 1 49 50
45
+ Convolution conv_15 1 1 50 51 0=64 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=36864
46
+ Swish silu_124 1 1 51 52
47
+ BinaryOp add_2 2 1 47 52 53 0=0
48
+ Split splitncnn_5 1 2 53 54 55
49
+ Convolution conv_16 1 1 55 56 0=64 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=36864
50
+ Swish silu_125 1 1 56 57
51
+ Convolution conv_17 1 1 57 58 0=64 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=36864
52
+ Swish silu_126 1 1 58 59
53
+ BinaryOp add_3 2 1 54 59 60 0=0
54
+ Convolution conv_18 1 1 43 61 0=64 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=8192
55
+ Swish silu_127 1 1 61 62
56
+ Concat cat_2 2 1 60 62 63 0=0
57
+ Convolution conv_19 1 1 63 64 0=128 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=16384
58
+ Swish silu_128 1 1 64 65
59
+ Concat cat_3 3 1 40 42 65 66 0=0
60
+ Convolution conv_20 1 1 66 67 0=512 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=196608
61
+ Swish silu_129 1 1 67 68
62
+ Split splitncnn_6 1 2 68 69 70
63
+ Convolution conv_21 1 1 70 71 0=512 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=2359296
64
+ Swish silu_130 1 1 71 72
65
+ Convolution conv_22 1 1 72 73 0=512 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=262144
66
+ Swish silu_131 1 1 73 74
67
+ Slice split_2 1 2 74 75 76 -23300=2,256,256 1=0
68
+ Split splitncnn_7 1 3 76 77 78 79
69
+ Convolution conv_23 1 1 79 80 0=128 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=32768
70
+ Swish silu_132 1 1 80 81
71
+ Split splitncnn_8 1 2 81 82 83
72
+ Convolution conv_24 1 1 83 84 0=128 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=147456
73
+ Swish silu_133 1 1 84 85
74
+ Convolution conv_25 1 1 85 86 0=128 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=147456
75
+ Swish silu_134 1 1 86 87
76
+ BinaryOp add_4 2 1 82 87 88 0=0
77
+ Split splitncnn_9 1 2 88 89 90
78
+ Convolution conv_26 1 1 90 91 0=128 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=147456
79
+ Swish silu_135 1 1 91 92
80
+ Convolution conv_27 1 1 92 93 0=128 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=147456
81
+ Swish silu_136 1 1 93 94
82
+ BinaryOp add_5 2 1 89 94 95 0=0
83
+ Convolution conv_28 1 1 78 96 0=128 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=32768
84
+ Swish silu_137 1 1 96 97
85
+ Concat cat_4 2 1 95 97 98 0=0
86
+ Convolution conv_29 1 1 98 99 0=256 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=65536
87
+ Swish silu_138 1 1 99 100
88
+ Concat cat_5 3 1 75 77 100 101 0=0
89
+ Convolution conv_30 1 1 101 102 0=512 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=393216
90
+ Swish silu_139 1 1 102 103
91
+ Split splitncnn_10 1 2 103 104 105
92
+ Convolution conv_31 1 1 105 106 0=512 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=2359296
93
+ Swish silu_140 1 1 106 107
94
+ Convolution conv_32 1 1 107 108 0=512 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=262144
95
+ Swish silu_141 1 1 108 109
96
+ Slice split_3 1 2 109 110 111 -23300=2,256,256 1=0
97
+ Split splitncnn_11 1 3 111 112 113 114
98
+ Convolution conv_33 1 1 114 115 0=128 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=32768
99
+ Swish silu_142 1 1 115 116
100
+ Split splitncnn_12 1 2 116 117 118
101
+ Convolution conv_34 1 1 118 119 0=128 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=147456
102
+ Swish silu_143 1 1 119 120
103
+ Convolution conv_35 1 1 120 121 0=128 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=147456
104
+ Swish silu_144 1 1 121 122
105
+ BinaryOp add_6 2 1 117 122 123 0=0
106
+ Split splitncnn_13 1 2 123 124 125
107
+ Convolution conv_36 1 1 125 126 0=128 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=147456
108
+ Swish silu_145 1 1 126 127
109
+ Convolution conv_37 1 1 127 128 0=128 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=147456
110
+ Swish silu_146 1 1 128 129
111
+ BinaryOp add_7 2 1 124 129 130 0=0
112
+ Convolution conv_38 1 1 113 131 0=128 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=32768
113
+ Swish silu_147 1 1 131 132
114
+ Concat cat_6 2 1 130 132 133 0=0
115
+ Convolution conv_39 1 1 133 134 0=256 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=65536
116
+ Swish silu_148 1 1 134 135
117
+ Concat cat_7 3 1 110 112 135 136 0=0
118
+ Convolution conv_40 1 1 136 137 0=512 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=393216
119
+ Swish silu_149 1 1 137 138
120
+ Convolution conv_41 1 1 138 139 0=256 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=131072
121
+ Swish silu_150 1 1 139 140
122
+ Split splitncnn_14 1 2 140 141 142
123
+ Pooling maxpool2d_106 1 1 142 143 0=0 1=5 11=5 12=1 13=2 2=1 3=2 5=1
124
+ Split splitncnn_15 1 2 143 144 145
125
+ Pooling maxpool2d_107 1 1 145 146 0=0 1=5 11=5 12=1 13=2 2=1 3=2 5=1
126
+ Split splitncnn_16 1 2 146 147 148
127
+ Pooling maxpool2d_108 1 1 148 149 0=0 1=5 11=5 12=1 13=2 2=1 3=2 5=1
128
+ Concat cat_8 4 1 141 144 147 149 150 0=0
129
+ Convolution conv_42 1 1 150 151 0=512 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=524288
130
+ Swish silu_151 1 1 151 152
131
+ Convolution conv_43 1 1 152 153 0=512 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=262144
132
+ Swish silu_152 1 1 153 154
133
+ Slice split_4 1 2 154 155 156 -23300=2,256,256 1=0
134
+ Split splitncnn_17 1 2 156 157 158
135
+ Convolution conv_44 1 1 158 159 0=512 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=131072
136
+ Reshape view_218 1 1 159 160 0=400 1=128 2=4
137
+ Slice split_5 1 3 160 161 162 163 -23300=3,32,32,64 1=1
138
+ Split splitncnn_18 1 2 163 164 165
139
+ Permute transpose_227 1 1 161 166 0=1
140
+ MatMul matmul_225 2 1 166 162 167
141
+ BinaryOp mul_8 1 1 167 168 0=2 1=1 2=1.767767e-01
142
+ Softmax softmax_214 1 1 168 169 0=2 1=1
143
+ MatMul matmultransb_0 2 1 165 169 170 0=1
144
+ Reshape view_219 1 1 170 171 0=20 1=20 2=256
145
+ Reshape reshape_216 1 1 164 172 0=20 1=20 2=256
146
+ ConvolutionDepthWise convdw_230 1 1 172 173 0=256 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=2304 7=256
147
+ BinaryOp add_9 2 1 171 173 174 0=0
148
+ Convolution conv_45 1 1 174 175 0=256 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=65536
149
+ BinaryOp add_10 2 1 157 175 176 0=0
150
+ Split splitncnn_19 1 2 176 177 178
151
+ Convolution conv_46 1 1 178 179 0=512 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=131072
152
+ Swish silu_153 1 1 179 180
153
+ Convolution conv_47 1 1 180 181 0=256 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=131072
154
+ BinaryOp add_11 2 1 177 181 182 0=0
155
+ Concat cat_9 2 1 155 182 183 0=0
156
+ Convolution conv_48 1 1 183 184 0=512 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=262144
157
+ Swish silu_154 1 1 184 185
158
+ Split splitncnn_20 1 2 185 186 187
159
+ Interp upsample_211 1 1 187 188 0=1 1=2.000000e+00 2=2.000000e+00 6=0
160
+ Concat cat_10 2 1 188 104 189 0=0
161
+ Convolution conv_49 1 1 189 190 0=512 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=524288
162
+ Swish silu_155 1 1 190 191
163
+ Slice split_6 1 2 191 192 193 -23300=2,256,256 1=0
164
+ Split splitncnn_21 1 3 193 194 195 196
165
+ Convolution conv_50 1 1 196 197 0=128 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=32768
166
+ Swish silu_156 1 1 197 198
167
+ Split splitncnn_22 1 2 198 199 200
168
+ Convolution conv_51 1 1 200 201 0=128 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=147456
169
+ Swish silu_157 1 1 201 202
170
+ Convolution conv_52 1 1 202 203 0=128 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=147456
171
+ Swish silu_158 1 1 203 204
172
+ BinaryOp add_12 2 1 199 204 205 0=0
173
+ Split splitncnn_23 1 2 205 206 207
174
+ Convolution conv_53 1 1 207 208 0=128 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=147456
175
+ Swish silu_159 1 1 208 209
176
+ Convolution conv_54 1 1 209 210 0=128 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=147456
177
+ Swish silu_160 1 1 210 211
178
+ BinaryOp add_13 2 1 206 211 212 0=0
179
+ Convolution conv_55 1 1 195 213 0=128 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=32768
180
+ Swish silu_161 1 1 213 214
181
+ Concat cat_11 2 1 212 214 215 0=0
182
+ Convolution conv_56 1 1 215 216 0=256 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=65536
183
+ Swish silu_162 1 1 216 217
184
+ Concat cat_12 3 1 192 194 217 218 0=0
185
+ Convolution conv_57 1 1 218 219 0=512 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=393216
186
+ Swish silu_163 1 1 219 220
187
+ Split splitncnn_24 1 2 220 221 222
188
+ Interp upsample_212 1 1 222 223 0=1 1=2.000000e+00 2=2.000000e+00 6=0
189
+ Concat cat_13 2 1 223 69 224 0=0
190
+ Convolution conv_58 1 1 224 225 0=256 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=262144
191
+ Swish silu_164 1 1 225 226
192
+ Slice split_7 1 2 226 227 228 -23300=2,128,128 1=0
193
+ Split splitncnn_25 1 3 228 229 230 231
194
+ Convolution conv_59 1 1 231 232 0=64 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=8192
195
+ Swish silu_165 1 1 232 233
196
+ Split splitncnn_26 1 2 233 234 235
197
+ Convolution conv_60 1 1 235 236 0=64 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=36864
198
+ Swish silu_166 1 1 236 237
199
+ Convolution conv_61 1 1 237 238 0=64 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=36864
200
+ Swish silu_167 1 1 238 239
201
+ BinaryOp add_14 2 1 234 239 240 0=0
202
+ Split splitncnn_27 1 2 240 241 242
203
+ Convolution conv_62 1 1 242 243 0=64 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=36864
204
+ Swish silu_168 1 1 243 244
205
+ Convolution conv_63 1 1 244 245 0=64 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=36864
206
+ Swish silu_169 1 1 245 246
207
+ BinaryOp add_15 2 1 241 246 247 0=0
208
+ Convolution conv_64 1 1 230 248 0=64 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=8192
209
+ Swish silu_170 1 1 248 249
210
+ Concat cat_14 2 1 247 249 250 0=0
211
+ Convolution conv_65 1 1 250 251 0=128 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=16384
212
+ Swish silu_171 1 1 251 252
213
+ Concat cat_15 3 1 227 229 252 253 0=0
214
+ Convolution conv_66 1 1 253 254 0=256 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=98304
215
+ Swish silu_172 1 1 254 255
216
+ Split splitncnn_28 1 3 255 256 257 258
217
+ Convolution conv_67 1 1 257 259 0=256 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=589824
218
+ Swish silu_173 1 1 259 260
219
+ Concat cat_16 2 1 260 221 261 0=0
220
+ Convolution conv_68 1 1 261 262 0=512 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=393216
221
+ Swish silu_174 1 1 262 263
222
+ Slice split_8 1 2 263 264 265 -23300=2,256,256 1=0
223
+ Split splitncnn_29 1 3 265 266 267 268
224
+ Convolution conv_69 1 1 268 269 0=128 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=32768
225
+ Swish silu_175 1 1 269 270
226
+ Split splitncnn_30 1 2 270 271 272
227
+ Convolution conv_70 1 1 272 273 0=128 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=147456
228
+ Swish silu_176 1 1 273 274
229
+ Convolution conv_71 1 1 274 275 0=128 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=147456
230
+ Swish silu_177 1 1 275 276
231
+ BinaryOp add_16 2 1 271 276 277 0=0
232
+ Split splitncnn_31 1 2 277 278 279
233
+ Convolution conv_72 1 1 279 280 0=128 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=147456
234
+ Swish silu_178 1 1 280 281
235
+ Convolution conv_73 1 1 281 282 0=128 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=147456
236
+ Swish silu_179 1 1 282 283
237
+ BinaryOp add_17 2 1 278 283 284 0=0
238
+ Convolution conv_74 1 1 267 285 0=128 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=32768
239
+ Swish silu_180 1 1 285 286
240
+ Concat cat_17 2 1 284 286 287 0=0
241
+ Convolution conv_75 1 1 287 288 0=256 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=65536
242
+ Swish silu_181 1 1 288 289
243
+ Concat cat_18 3 1 264 266 289 290 0=0
244
+ Convolution conv_76 1 1 290 291 0=512 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=393216
245
+ Swish silu_182 1 1 291 292
246
+ Split splitncnn_32 1 3 292 293 294 295
247
+ Convolution conv_77 1 1 294 296 0=512 1=3 11=3 12=1 13=2 14=1 2=1 3=2 4=1 5=1 6=2359296
248
+ Swish silu_183 1 1 296 297
249
+ Concat cat_19 2 1 297 186 298 0=0
250
+ Convolution conv_78 1 1 298 299 0=512 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=524288
251
+ Swish silu_184 1 1 299 300
252
+ Slice split_9 1 2 300 301 302 -23300=2,256,256 1=0
253
+ Split splitncnn_33 1 3 302 303 304 305
254
+ Convolution conv_79 1 1 305 306 0=128 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=32768
255
+ Swish silu_185 1 1 306 307
256
+ Split splitncnn_34 1 2 307 308 309
257
+ Convolution conv_80 1 1 309 310 0=128 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=147456
258
+ Swish silu_186 1 1 310 311
259
+ Convolution conv_81 1 1 311 312 0=128 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=147456
260
+ Swish silu_187 1 1 312 313
261
+ BinaryOp add_18 2 1 308 313 314 0=0
262
+ Split splitncnn_35 1 2 314 315 316
263
+ Convolution conv_82 1 1 316 317 0=128 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=147456
264
+ Swish silu_188 1 1 317 318
265
+ Convolution conv_83 1 1 318 319 0=128 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=147456
266
+ Swish silu_189 1 1 319 320
267
+ BinaryOp add_19 2 1 315 320 321 0=0
268
+ Convolution conv_84 1 1 304 322 0=128 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=32768
269
+ Swish silu_190 1 1 322 323
270
+ Concat cat_20 2 1 321 323 324 0=0
271
+ Convolution conv_85 1 1 324 325 0=256 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=65536
272
+ Swish silu_191 1 1 325 326
273
+ Concat cat_21 3 1 301 303 326 327 0=0
274
+ Convolution conv_86 1 1 327 328 0=512 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=393216
275
+ Swish silu_192 1 1 328 329
276
+ Split splitncnn_36 1 2 329 330 331
277
+ MemoryData pnnx_213 0 1 332 0=8400
278
+ Convolution conv_87 1 1 256 333 0=64 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=147456
279
+ Swish silu_193 1 1 333 334
280
+ Convolution conv_88 1 1 334 335 0=64 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=36864
281
+ Swish silu_194 1 1 335 336
282
+ Convolution conv_89 1 1 336 337 0=64 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=4096
283
+ ConvolutionDepthWise convdw_231 1 1 258 338 0=256 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=2304 7=256
284
+ Swish silu_195 1 1 338 339
285
+ Convolution conv_90 1 1 339 340 0=256 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=65536
286
+ Swish silu_196 1 1 340 341
287
+ ConvolutionDepthWise convdw_232 1 1 341 342 0=256 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=2304 7=256
288
+ Swish silu_197 1 1 342 343
289
+ Convolution conv_91 1 1 343 344 0=256 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=65536
290
+ Swish silu_198 1 1 344 345
291
+ Convolution conv_92 1 1 345 346 0=1 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=256
292
+ Concat cat_22 2 1 337 346 347 0=0
293
+ Convolution conv_93 1 1 293 348 0=64 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=294912
294
+ Swish silu_199 1 1 348 349
295
+ Convolution conv_94 1 1 349 350 0=64 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=36864
296
+ Swish silu_200 1 1 350 351
297
+ Convolution conv_95 1 1 351 352 0=64 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=4096
298
+ ConvolutionDepthWise convdw_233 1 1 295 353 0=512 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=4608 7=512
299
+ Swish silu_201 1 1 353 354
300
+ Convolution conv_96 1 1 354 355 0=256 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=131072
301
+ Swish silu_202 1 1 355 356
302
+ ConvolutionDepthWise convdw_234 1 1 356 357 0=256 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=2304 7=256
303
+ Swish silu_203 1 1 357 358
304
+ Convolution conv_97 1 1 358 359 0=256 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=65536
305
+ Swish silu_204 1 1 359 360
306
+ Convolution conv_98 1 1 360 361 0=1 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=256
307
+ Concat cat_23 2 1 352 361 362 0=0
308
+ Convolution conv_99 1 1 330 363 0=64 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=294912
309
+ Swish silu_205 1 1 363 364
310
+ Convolution conv_100 1 1 364 365 0=64 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=36864
311
+ Swish silu_206 1 1 365 366
312
+ Convolution conv_101 1 1 366 367 0=64 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=4096
313
+ ConvolutionDepthWise convdw_235 1 1 331 368 0=512 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=4608 7=512
314
+ Swish silu_207 1 1 368 369
315
+ Convolution conv_102 1 1 369 370 0=256 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=131072
316
+ Swish silu_208 1 1 370 371
317
+ ConvolutionDepthWise convdw_236 1 1 371 372 0=256 1=3 11=3 12=1 13=1 14=1 2=1 3=1 4=1 5=1 6=2304 7=256
318
+ Swish silu_209 1 1 372 373
319
+ Convolution conv_103 1 1 373 374 0=256 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=65536
320
+ Swish silu_210 1 1 374 375
321
+ Convolution conv_104 1 1 375 376 0=1 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=1 6=256
322
+ Concat cat_24 2 1 367 376 377 0=0
323
+ Reshape view_220 1 1 347 378 0=6400 1=65
324
+ Reshape view_221 1 1 362 379 0=1600 1=65
325
+ Reshape view_222 1 1 377 380 0=400 1=65
326
+ Concat cat_25 3 1 378 379 380 381 0=1
327
+ Slice split_10 1 2 381 382 383 -23300=2,64,1 1=0
328
+ Reshape view_223 1 1 382 384 0=8400 1=16 2=4
329
+ Permute transpose_229 1 1 384 385 0=2
330
+ Softmax softmax_215 1 1 385 386 0=0 1=1
331
+ Convolution conv_105 1 1 386 387 0=1 1=1 11=1 12=1 13=1 14=0 2=1 3=1 4=0 5=0 6=16
332
+ Reshape view_224 1 1 387 388 0=8400 1=4
333
+ MemoryData pnnx_fold_anchor_points.1 0 1 389 0=8400 1=2
334
+ MemoryData pnnx_fold_anchor_points.1_1 0 1 390 0=8400 1=2
335
+ Slice chunk_0 1 2 388 391 392 -23300=2,-233,-233 1=0
336
+ BinaryOp sub_20 2 1 389 391 393 0=1
337
+ Split splitncnn_37 1 2 393 394 395
338
+ BinaryOp add_21 2 1 390 392 396 0=0
339
+ Split splitncnn_38 1 2 396 397 398
340
+ BinaryOp add_22 2 1 394 397 399 0=0
341
+ BinaryOp div_23 1 1 399 400 0=3 1=1 2=2.000000e+00
342
+ BinaryOp sub_24 2 1 398 395 401 0=1
343
+ Concat cat_26 2 1 400 401 402 0=0
344
+ Reshape reshape_217 1 1 332 403 0=8400 1=1
345
+ BinaryOp mul_25 2 1 402 403 404 0=2
346
+ Sigmoid sigmoid_213 1 1 383 405
347
+ Concat cat_27 2 1 404 405 out0 0=0
train/weights/best_ncnn_model/model_ncnn.py ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import ncnn
3
+ import torch
4
+
5
+ def test_inference():
6
+ torch.manual_seed(0)
7
+ in0 = torch.rand(1, 3, 640, 640, dtype=torch.float)
8
+ out = []
9
+
10
+ with ncnn.Net() as net:
11
+ net.load_param("training_logs\train\weights\best_ncnn_model\model.ncnn.param")
12
+ net.load_model("training_logs\train\weights\best_ncnn_model\model.ncnn.bin")
13
+
14
+ with net.create_extractor() as ex:
15
+ ex.input("in0", ncnn.Mat(in0.squeeze(0).numpy()).clone())
16
+
17
+ _, out0 = ex.extract("out0")
18
+ out.append(torch.from_numpy(np.array(out0)).unsqueeze(0))
19
+
20
+ if len(out) == 1:
21
+ return out[0]
22
+ else:
23
+ return tuple(out)
24
+
25
+ if __name__ == "__main__":
26
+ print(test_inference())
train/weights/last.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5867096f5ade70db363f7086f74aa3cf1e0a2869fea44092d13e3daf15f309ee
3
+ size 40517285
yolo11m_urchin_trained.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e263837f7c43675e1ec2bbfda6319c8a591ba06da96b011f65f615ac76aff9b
3
+ size 40628379
yolo11m_urchin_weights.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:268006738237d71f97d585ae94a229854cce5e3f1429b130dcca987367d2879b
3
+ size 80629527