akshitguptafintek24 commited on
Commit
7379c1a
·
verified ·
1 Parent(s): d8aae85

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,415 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/all-mpnet-base-v2
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ metrics:
7
+ - pearson_cosine
8
+ - spearman_cosine
9
+ - pearson_manhattan
10
+ - spearman_manhattan
11
+ - pearson_euclidean
12
+ - spearman_euclidean
13
+ - pearson_dot
14
+ - spearman_dot
15
+ - pearson_max
16
+ - spearman_max
17
+ pipeline_tag: sentence-similarity
18
+ tags:
19
+ - sentence-transformers
20
+ - sentence-similarity
21
+ - feature-extraction
22
+ - generated_from_trainer
23
+ - dataset_size:50
24
+ - loss:CosineSimilarityLoss
25
+ widget:
26
+ - source_sentence: Freepoint Commodity services venture
27
+ sentences:
28
+ - DUPLI OF 823707 BITUBULK SRL VESSEL
29
+ - Freepoint Commodities LLC
30
+ - AUGUSTA ENERGY DMCC
31
+ - source_sentence: BNG INT private ltd
32
+ sentences:
33
+ - BGN INT DMCC
34
+ - Count Energy PA
35
+ - BB Energy Group Holding Ltd
36
+ - source_sentence: Act fuel ball venture
37
+ sentences:
38
+ - ADDAX ENERGY SA
39
+ - BITUME INVEST S.A.R.L
40
+ - Altis Group International, LLC
41
+ - source_sentence: BW gas product ltd
42
+ sentences:
43
+ - Bulk Trading SA
44
+ - BINH SON REFINING AND PETRO LPIINTL
45
+ - BW LPG PRODUCT SERVICES LPIINTL
46
+ - source_sentence: Altis private limited
47
+ sentences:
48
+ - E1 Corporation
49
+ - Diersch & Schrder GmbH & Co. KG
50
+ - Altis Group International, LLC
51
+ model-index:
52
+ - name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
53
+ results:
54
+ - task:
55
+ type: semantic-similarity
56
+ name: Semantic Similarity
57
+ dataset:
58
+ name: sts test
59
+ type: sts-test
60
+ metrics:
61
+ - type: pearson_cosine
62
+ value: 0.9446733306821109
63
+ name: Pearson Cosine
64
+ - type: spearman_cosine
65
+ value: 0.9249801057480238
66
+ name: Spearman Cosine
67
+ - type: pearson_manhattan
68
+ value: 0.9624404790642681
69
+ name: Pearson Manhattan
70
+ - type: spearman_manhattan
71
+ value: 0.9269933391918109
72
+ name: Spearman Manhattan
73
+ - type: pearson_euclidean
74
+ value: 0.9638295828361044
75
+ name: Pearson Euclidean
76
+ - type: spearman_euclidean
77
+ value: 0.9249801057480238
78
+ name: Spearman Euclidean
79
+ - type: pearson_dot
80
+ value: 0.9446733259374165
81
+ name: Pearson Dot
82
+ - type: spearman_dot
83
+ value: 0.9249801057480238
84
+ name: Spearman Dot
85
+ - type: pearson_max
86
+ value: 0.9638295828361044
87
+ name: Pearson Max
88
+ - type: spearman_max
89
+ value: 0.9269933391918109
90
+ name: Spearman Max
91
+ ---
92
+
93
+ # SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
94
+
95
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) on the train dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
96
+
97
+ ## Model Details
98
+
99
+ ### Model Description
100
+ - **Model Type:** Sentence Transformer
101
+ - **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision 84f2bcc00d77236f9e89c8a360a00fb1139bf47d -->
102
+ - **Maximum Sequence Length:** 384 tokens
103
+ - **Output Dimensionality:** 768 tokens
104
+ - **Similarity Function:** Cosine Similarity
105
+ - **Training Dataset:**
106
+ - train
107
+ <!-- - **Language:** Unknown -->
108
+ <!-- - **License:** Unknown -->
109
+
110
+ ### Model Sources
111
+
112
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
113
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
114
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
115
+
116
+ ### Full Model Architecture
117
+
118
+ ```
119
+ SentenceTransformer(
120
+ (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
121
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
122
+ (2): Normalize()
123
+ )
124
+ ```
125
+
126
+ ## Usage
127
+
128
+ ### Direct Usage (Sentence Transformers)
129
+
130
+ First install the Sentence Transformers library:
131
+
132
+ ```bash
133
+ pip install -U sentence-transformers
134
+ ```
135
+
136
+ Then you can load this model and run inference.
137
+ ```python
138
+ from sentence_transformers import SentenceTransformer
139
+
140
+ # Download from the 🤗 Hub
141
+ model = SentenceTransformer("akshitguptafintek24/exxon-semantic-search")
142
+ # Run inference
143
+ sentences = [
144
+ 'Altis private limited',
145
+ 'Altis Group International, LLC',
146
+ 'Diersch & Schrder GmbH & Co. KG',
147
+ ]
148
+ embeddings = model.encode(sentences)
149
+ print(embeddings.shape)
150
+ # [3, 768]
151
+
152
+ # Get the similarity scores for the embeddings
153
+ similarities = model.similarity(embeddings, embeddings)
154
+ print(similarities.shape)
155
+ # [3, 3]
156
+ ```
157
+
158
+ <!--
159
+ ### Direct Usage (Transformers)
160
+
161
+ <details><summary>Click to see the direct usage in Transformers</summary>
162
+
163
+ </details>
164
+ -->
165
+
166
+ <!--
167
+ ### Downstream Usage (Sentence Transformers)
168
+
169
+ You can finetune this model on your own dataset.
170
+
171
+ <details><summary>Click to expand</summary>
172
+
173
+ </details>
174
+ -->
175
+
176
+ <!--
177
+ ### Out-of-Scope Use
178
+
179
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
180
+ -->
181
+
182
+ ## Evaluation
183
+
184
+ ### Metrics
185
+
186
+ #### Semantic Similarity
187
+ * Dataset: `sts-test`
188
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
189
+
190
+ | Metric | Value |
191
+ |:--------------------|:----------|
192
+ | pearson_cosine | 0.9447 |
193
+ | **spearman_cosine** | **0.925** |
194
+ | pearson_manhattan | 0.9624 |
195
+ | spearman_manhattan | 0.927 |
196
+ | pearson_euclidean | 0.9638 |
197
+ | spearman_euclidean | 0.925 |
198
+ | pearson_dot | 0.9447 |
199
+ | spearman_dot | 0.925 |
200
+ | pearson_max | 0.9638 |
201
+ | spearman_max | 0.927 |
202
+
203
+ <!--
204
+ ## Bias, Risks and Limitations
205
+
206
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
207
+ -->
208
+
209
+ <!--
210
+ ### Recommendations
211
+
212
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
213
+ -->
214
+
215
+ ## Training Details
216
+
217
+ ### Training Dataset
218
+
219
+ #### train
220
+
221
+ * Dataset: train
222
+ * Size: 50 training samples
223
+ * Columns: <code>Applicant name</code>, <code>Customer name</code>, and <code>score</code>
224
+ * Approximate statistics based on the first 1000 samples:
225
+ | | Applicant name | Customer name | score |
226
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------|
227
+ | type | string | string | float |
228
+ | details | <ul><li>min: 5 tokens</li><li>mean: 7.36 tokens</li><li>max: 16 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 8.32 tokens</li><li>max: 17 tokens</li></ul> | <ul><li>min: 0.54</li><li>mean: 0.86</li><li>max: 1.0</li></ul> |
229
+ * Samples:
230
+ | Applicant name | Customer name | score |
231
+ |:-----------------------------------|:--------------------------------------|:------------------|
232
+ | <code>Act Commodity GBV</code> | <code>ACT Commodities Group BV</code> | <code>1.0</code> |
233
+ | <code>Act Commodity GBV</code> | <code>ACT Fuels B.V.</code> | <code>0.76</code> |
234
+ | <code>Act fuel ball venture</code> | <code>ACT Fuels B.V.</code> | <code>1.0</code> |
235
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
236
+ ```json
237
+ {
238
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
239
+ }
240
+ ```
241
+
242
+ ### Training Hyperparameters
243
+ #### Non-Default Hyperparameters
244
+
245
+ - `per_device_train_batch_size`: 16
246
+ - `learning_rate`: 2e-05
247
+ - `num_train_epochs`: 30
248
+ - `warmup_ratio`: 0.1
249
+
250
+ #### All Hyperparameters
251
+ <details><summary>Click to expand</summary>
252
+
253
+ - `overwrite_output_dir`: False
254
+ - `do_predict`: False
255
+ - `eval_strategy`: no
256
+ - `prediction_loss_only`: True
257
+ - `per_device_train_batch_size`: 16
258
+ - `per_device_eval_batch_size`: 8
259
+ - `per_gpu_train_batch_size`: None
260
+ - `per_gpu_eval_batch_size`: None
261
+ - `gradient_accumulation_steps`: 1
262
+ - `eval_accumulation_steps`: None
263
+ - `torch_empty_cache_steps`: None
264
+ - `learning_rate`: 2e-05
265
+ - `weight_decay`: 0.0
266
+ - `adam_beta1`: 0.9
267
+ - `adam_beta2`: 0.999
268
+ - `adam_epsilon`: 1e-08
269
+ - `max_grad_norm`: 1.0
270
+ - `num_train_epochs`: 30
271
+ - `max_steps`: -1
272
+ - `lr_scheduler_type`: linear
273
+ - `lr_scheduler_kwargs`: {}
274
+ - `warmup_ratio`: 0.1
275
+ - `warmup_steps`: 0
276
+ - `log_level`: passive
277
+ - `log_level_replica`: warning
278
+ - `log_on_each_node`: True
279
+ - `logging_nan_inf_filter`: True
280
+ - `save_safetensors`: True
281
+ - `save_on_each_node`: False
282
+ - `save_only_model`: False
283
+ - `restore_callback_states_from_checkpoint`: False
284
+ - `no_cuda`: False
285
+ - `use_cpu`: False
286
+ - `use_mps_device`: False
287
+ - `seed`: 42
288
+ - `data_seed`: None
289
+ - `jit_mode_eval`: False
290
+ - `use_ipex`: False
291
+ - `bf16`: False
292
+ - `fp16`: False
293
+ - `fp16_opt_level`: O1
294
+ - `half_precision_backend`: auto
295
+ - `bf16_full_eval`: False
296
+ - `fp16_full_eval`: False
297
+ - `tf32`: None
298
+ - `local_rank`: 0
299
+ - `ddp_backend`: None
300
+ - `tpu_num_cores`: None
301
+ - `tpu_metrics_debug`: False
302
+ - `debug`: []
303
+ - `dataloader_drop_last`: False
304
+ - `dataloader_num_workers`: 0
305
+ - `dataloader_prefetch_factor`: None
306
+ - `past_index`: -1
307
+ - `disable_tqdm`: False
308
+ - `remove_unused_columns`: True
309
+ - `label_names`: None
310
+ - `load_best_model_at_end`: False
311
+ - `ignore_data_skip`: False
312
+ - `fsdp`: []
313
+ - `fsdp_min_num_params`: 0
314
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
315
+ - `fsdp_transformer_layer_cls_to_wrap`: None
316
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
317
+ - `deepspeed`: None
318
+ - `label_smoothing_factor`: 0.0
319
+ - `optim`: adamw_torch
320
+ - `optim_args`: None
321
+ - `adafactor`: False
322
+ - `group_by_length`: False
323
+ - `length_column_name`: length
324
+ - `ddp_find_unused_parameters`: None
325
+ - `ddp_bucket_cap_mb`: None
326
+ - `ddp_broadcast_buffers`: False
327
+ - `dataloader_pin_memory`: True
328
+ - `dataloader_persistent_workers`: False
329
+ - `skip_memory_metrics`: True
330
+ - `use_legacy_prediction_loop`: False
331
+ - `push_to_hub`: False
332
+ - `resume_from_checkpoint`: None
333
+ - `hub_model_id`: None
334
+ - `hub_strategy`: every_save
335
+ - `hub_private_repo`: False
336
+ - `hub_always_push`: False
337
+ - `gradient_checkpointing`: False
338
+ - `gradient_checkpointing_kwargs`: None
339
+ - `include_inputs_for_metrics`: False
340
+ - `eval_do_concat_batches`: True
341
+ - `fp16_backend`: auto
342
+ - `push_to_hub_model_id`: None
343
+ - `push_to_hub_organization`: None
344
+ - `mp_parameters`:
345
+ - `auto_find_batch_size`: False
346
+ - `full_determinism`: False
347
+ - `torchdynamo`: None
348
+ - `ray_scope`: last
349
+ - `ddp_timeout`: 1800
350
+ - `torch_compile`: False
351
+ - `torch_compile_backend`: None
352
+ - `torch_compile_mode`: None
353
+ - `dispatch_batches`: None
354
+ - `split_batches`: None
355
+ - `include_tokens_per_second`: False
356
+ - `include_num_input_tokens_seen`: False
357
+ - `neftune_noise_alpha`: None
358
+ - `optim_target_modules`: None
359
+ - `batch_eval_metrics`: False
360
+ - `eval_on_start`: False
361
+ - `eval_use_gather_object`: False
362
+ - `batch_sampler`: batch_sampler
363
+ - `multi_dataset_batch_sampler`: proportional
364
+
365
+ </details>
366
+
367
+ ### Training Logs
368
+ | Epoch | Step | sts-test_spearman_cosine |
369
+ |:-----:|:----:|:------------------------:|
370
+ | 30.0 | 120 | 0.9250 |
371
+
372
+
373
+ ### Framework Versions
374
+ - Python: 3.11.9
375
+ - Sentence Transformers: 3.0.1
376
+ - Transformers: 4.44.2
377
+ - PyTorch: 2.4.0+cpu
378
+ - Accelerate: 0.33.0
379
+ - Datasets: 2.21.0
380
+ - Tokenizers: 0.19.1
381
+
382
+ ## Citation
383
+
384
+ ### BibTeX
385
+
386
+ #### Sentence Transformers
387
+ ```bibtex
388
+ @inproceedings{reimers-2019-sentence-bert,
389
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
390
+ author = "Reimers, Nils and Gurevych, Iryna",
391
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
392
+ month = "11",
393
+ year = "2019",
394
+ publisher = "Association for Computational Linguistics",
395
+ url = "https://arxiv.org/abs/1908.10084",
396
+ }
397
+ ```
398
+
399
+ <!--
400
+ ## Glossary
401
+
402
+ *Clearly define terms in order to be accessible across audiences.*
403
+ -->
404
+
405
+ <!--
406
+ ## Model Card Authors
407
+
408
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
409
+ -->
410
+
411
+ <!--
412
+ ## Model Card Contact
413
+
414
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
415
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "C:\\Pycharm\\Projects\\nlp\\src\\models\\nlp\\notebooks\\semanticSearch\\exxon\\models\\all-mpnet-base-v2\\final",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.44.2",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.4.0+cpu"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c60b02fe1ac0b8c6429a1903af0a29e5d08a09bbb043602d8aacf850a29aec3e
3
+ size 437967672
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 384,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": true,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "mask_token": "<mask>",
58
+ "max_length": 128,
59
+ "model_max_length": 384,
60
+ "pad_to_multiple_of": null,
61
+ "pad_token": "<pad>",
62
+ "pad_token_type_id": 0,
63
+ "padding_side": "right",
64
+ "sep_token": "</s>",
65
+ "stride": 0,
66
+ "strip_accents": null,
67
+ "tokenize_chinese_chars": true,
68
+ "tokenizer_class": "MPNetTokenizer",
69
+ "truncation_side": "right",
70
+ "truncation_strategy": "longest_first",
71
+ "unk_token": "[UNK]"
72
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff