File size: 1,749 Bytes
c4d2498
 
 
 
 
8859889
 
c4d2498
 
 
 
 
 
 
 
 
 
b9703c8
8859889
b9703c8
 
c4d2498
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9703c8
c4d2498
b9703c8
c4d2498
 
 
 
b9703c8
c4d2498
 
 
b9703c8
 
 
 
 
 
 
c4d2498
 
 
 
b9703c8
 
c4d2498
b9703c8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
license: apache-2.0
base_model: distilbert/distilbert-base-multilingual-cased
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: distilbert-multilingual-sdg-classification
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-multilingual-sdg-classification

This model is a fine-tuned version of [distilbert/distilbert-base-multilingual-cased](https://huggingface.co/distilbert/distilbert-base-multilingual-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7341
- F1: 0.7954

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 600
- num_epochs: 5.0

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 1.484         | 1.0   | 1076 | 0.8800          | 0.7463 |
| 0.7957        | 2.0   | 2152 | 0.7796          | 0.7735 |
| 0.612         | 3.0   | 3228 | 0.7352          | 0.7904 |
| 0.4784        | 4.0   | 4304 | 0.7243          | 0.7948 |
| 0.3959        | 5.0   | 5380 | 0.7341          | 0.7954 |


### Framework versions

- Transformers 4.43.2
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1