File size: 4,231 Bytes
74f2246
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
---
library_name: peft
base_model: rayonlabs/e3f77680-ac2a-4c6f-afed-0b2386f29ee7
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 0c9e9d3e-6e7a-4048-9e65-dad2ba0250a4
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: rayonlabs/e3f77680-ac2a-4c6f-afed-0b2386f29ee7
bf16: true
chat_template: llama3
data_processes: 16
dataset_prepared_path: null
datasets:
- data_files:
  - 8a053a2d05ec29b3_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/8a053a2d05ec29b3_train_data.json
  type:
    field_input: context
    field_instruction: question
    field_output: final_decision
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 5
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: aleegis11/0c9e9d3e-6e7a-4048-9e65-dad2ba0250a4
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
  0: 75GB
max_steps: 200
micro_batch_size: 8
mlflow_experiment_name: /tmp/8a053a2d05ec29b3_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
  adam_beta1: 0.9
  adam_beta2: 0.95
  adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
sequence_len: 1024
special_tokens:
  pad_token: <|end_of_text|>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: dab6df52-ba8c-40d3-8369-22e8245b6f81
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: dab6df52-ba8c-40d3-8369-22e8245b6f81
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

```

</details><br>

# 0c9e9d3e-6e7a-4048-9e65-dad2ba0250a4

This model is a fine-tuned version of [rayonlabs/e3f77680-ac2a-4c6f-afed-0b2386f29ee7](https://huggingface.co/rayonlabs/e3f77680-ac2a-4c6f-afed-0b2386f29ee7) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0189

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 200

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 12.0695       | 0.0002 | 1    | 12.2735         |
| 0.0543        | 0.0080 | 50   | 0.0440          |
| 0.0109        | 0.0160 | 100  | 0.0451          |
| 0.0127        | 0.0239 | 150  | 0.0208          |
| 0.0239        | 0.0319 | 200  | 0.0189          |


### Framework versions

- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1