File size: 3,668 Bytes
dc59786 2af2e4c dc59786 2af2e4c dc59786 2af2e4c dc59786 659db69 dc59786 2af2e4c dc59786 1c6c288 dc59786 2af2e4c dc59786 1c6c288 298c45f 659db69 298c45f dc09d0d 298c45f 659db69 1327cf4 dc09d0d 1327cf4 1c6c288 dc09d0d 659db69 cb7522c 659db69 dc59786 2af2e4c dc59786 881d121 dc59786 1327cf4 dc59786 b6553d2 dc59786 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
---
language:
- be
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
base_model: openai/whisper-small
model-index:
- name: Whisper Small Belarusian
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: mozilla-foundation/common_voice_11_0 be
type: mozilla-foundation/common_voice_11_0
config: be
split: validation
args: be
metrics:
- type: wer
value: 6.3671568743912
name: WER
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: mozilla-foundation/common_voice_11_0 be
type: mozilla-foundation/common_voice_11_0
config: be
split: test
args: be
metrics:
- type: wer
value: 6.79
name: WER
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: google/fleurs
type: google/fleurs
config: be_by
split: test
metrics:
- type: wer
value: 43.615168811067036
name: 'WER (reference column: transcription)'
- type: wer
value: 45.89674723962996
name: 'WER (reference column: raw_transcription)'
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small Belarusian
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_11_0 be dataset.
It achieves the following results on the evaluation set:
- Loss on validation: 0.0706
- WER on validation set: 6.3672
- WER on test set: 6.79
## Source code
All the source coude is located both in:
* [GitHub repository](https://github.com/yks72p/whisper-finetuning-be)
* and under `src` folder
Code in these 2 places should be the same. GitHub is used to make development and training of multiple models (small, base, etc.) easier.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 12000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|
| 0.1907 | 0.08 | 1000 | 0.2546 | 25.4639 |
| 0.1482 | 0.17 | 2000 | 0.1641 | 17.1676 |
| 0.1175 | 0.25 | 3000 | 0.1454 | 15.5940 |
| 0.0958 | 0.33 | 4000 | 0.1261 | 13.2625 |
| 0.099 | 0.42 | 5000 | 0.1012 | 10.6143 |
| 0.028 | 1.05 | 6000 | 0.1053 | 9.8794 |
| 0.0473 | 1.13 | 7000 | 0.1029 | 10.3078 |
| 0.0391 | 1.21 | 8000 | 0.0924 | 9.2419 |
| 0.0423 | 1.3 | 9000 | 0.0797 | 7.9249 |
| 0.0604 | 1.38 | 10000 | 0.0688 | 7.0150 |
| 0.0121 | 2.01 | 11000 | 0.0696 | 6.4638 |
| 0.0155 | 2.1 | 12000 | 0.0706 | 6.3672 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
|