update model card README.md
Browse files
README.md
CHANGED
@@ -1,41 +1,38 @@
|
|
1 |
---
|
2 |
-
language:
|
3 |
-
- be
|
4 |
license: apache-2.0
|
5 |
tags:
|
6 |
-
- whisper-event
|
7 |
- generated_from_trainer
|
8 |
datasets:
|
9 |
-
-
|
10 |
metrics:
|
11 |
- wer
|
12 |
model-index:
|
13 |
-
- name:
|
14 |
results:
|
15 |
- task:
|
16 |
name: Automatic Speech Recognition
|
17 |
type: automatic-speech-recognition
|
18 |
dataset:
|
19 |
-
name:
|
20 |
-
type:
|
21 |
config: be
|
22 |
split: validation
|
23 |
args: be
|
24 |
metrics:
|
25 |
- name: Wer
|
26 |
type: wer
|
27 |
-
value:
|
28 |
---
|
29 |
|
30 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
31 |
should probably proofread and complete it, then remove this comment. -->
|
32 |
|
33 |
-
#
|
34 |
|
35 |
-
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the
|
36 |
It achieves the following results on the evaluation set:
|
37 |
-
- Loss: 0.
|
38 |
-
- Wer:
|
39 |
|
40 |
## Model description
|
41 |
|
@@ -61,7 +58,7 @@ The following hyperparameters were used during training:
|
|
61 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
- lr_scheduler_type: linear
|
63 |
- lr_scheduler_warmup_steps: 10
|
64 |
-
- training_steps:
|
65 |
- mixed_precision_training: Native AMP
|
66 |
|
67 |
### Training results
|
@@ -88,6 +85,16 @@ The following hyperparameters were used during training:
|
|
88 |
| 0.6803 | 0.9 | 180 | 0.4852 | 55.8608 |
|
89 |
| 0.4813 | 0.95 | 190 | 0.4686 | 51.2821 |
|
90 |
| 0.4952 | 1.0 | 200 | 0.4624 | 51.4652 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
|
93 |
### Framework versions
|
|
|
1 |
---
|
|
|
|
|
2 |
license: apache-2.0
|
3 |
tags:
|
|
|
4 |
- generated_from_trainer
|
5 |
datasets:
|
6 |
+
- common_voice_11_0
|
7 |
metrics:
|
8 |
- wer
|
9 |
model-index:
|
10 |
+
- name: whisper-tiny-be-test
|
11 |
results:
|
12 |
- task:
|
13 |
name: Automatic Speech Recognition
|
14 |
type: automatic-speech-recognition
|
15 |
dataset:
|
16 |
+
name: common_voice_11_0
|
17 |
+
type: common_voice_11_0
|
18 |
config: be
|
19 |
split: validation
|
20 |
args: be
|
21 |
metrics:
|
22 |
- name: Wer
|
23 |
type: wer
|
24 |
+
value: 46.7032967032967
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
should probably proofread and complete it, then remove this comment. -->
|
29 |
|
30 |
+
# whisper-tiny-be-test
|
31 |
|
32 |
+
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the common_voice_11_0 dataset.
|
33 |
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.4282
|
35 |
+
- Wer: 46.7033
|
36 |
|
37 |
## Model description
|
38 |
|
|
|
58 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
59 |
- lr_scheduler_type: linear
|
60 |
- lr_scheduler_warmup_steps: 10
|
61 |
+
- training_steps: 300
|
62 |
- mixed_precision_training: Native AMP
|
63 |
|
64 |
### Training results
|
|
|
85 |
| 0.6803 | 0.9 | 180 | 0.4852 | 55.8608 |
|
86 |
| 0.4813 | 0.95 | 190 | 0.4686 | 51.2821 |
|
87 |
| 0.4952 | 1.0 | 200 | 0.4624 | 51.4652 |
|
88 |
+
| 0.3956 | 0.03 | 210 | 0.4690 | 52.0147 |
|
89 |
+
| 0.3719 | 0.07 | 220 | 0.4673 | 52.7473 |
|
90 |
+
| 0.3168 | 0.1 | 230 | 0.4499 | 51.4652 |
|
91 |
+
| 0.3582 | 0.13 | 240 | 0.4525 | 46.8864 |
|
92 |
+
| 0.2475 | 0.17 | 250 | 0.4612 | 52.3810 |
|
93 |
+
| 0.2988 | 0.2 | 260 | 0.4346 | 49.8168 |
|
94 |
+
| 0.2749 | 0.23 | 270 | 0.4249 | 48.9011 |
|
95 |
+
| 0.3368 | 0.27 | 280 | 0.4388 | 46.5201 |
|
96 |
+
| 0.2574 | 0.3 | 290 | 0.4309 | 46.7033 |
|
97 |
+
| 0.2921 | 0.33 | 300 | 0.4282 | 46.7033 |
|
98 |
|
99 |
|
100 |
### Framework versions
|
train.log
CHANGED
@@ -242,3 +242,5 @@
|
|
242 |
{'loss': 0.2574, 'learning_rate': 4.482758620689655e-06, 'epoch': 0.3}
|
243 |
{'eval_loss': 0.43085092306137085, 'eval_wer': 46.7032967032967, 'eval_runtime': 18.1023, 'eval_samples_per_second': 3.535, 'eval_steps_per_second': 0.11, 'epoch': 0.3}
|
244 |
{'loss': 0.2921, 'learning_rate': 1.0344827586206898e-06, 'epoch': 0.33}
|
|
|
|
|
|
242 |
{'loss': 0.2574, 'learning_rate': 4.482758620689655e-06, 'epoch': 0.3}
|
243 |
{'eval_loss': 0.43085092306137085, 'eval_wer': 46.7032967032967, 'eval_runtime': 18.1023, 'eval_samples_per_second': 3.535, 'eval_steps_per_second': 0.11, 'epoch': 0.3}
|
244 |
{'loss': 0.2921, 'learning_rate': 1.0344827586206898e-06, 'epoch': 0.33}
|
245 |
+
{'eval_loss': 0.4282010793685913, 'eval_wer': 46.7032967032967, 'eval_runtime': 18.1178, 'eval_samples_per_second': 3.532, 'eval_steps_per_second': 0.11, 'epoch': 0.33}
|
246 |
+
{'train_runtime': 1208.0467, 'train_samples_per_second': 7.947, 'train_steps_per_second': 0.248, 'train_loss': 0.10500287771224975, 'epoch': 0.33}
|