ales commited on
Commit
7f108b5
·
1 Parent(s): 7ff9db1

update model card README.md

Browse files
Files changed (2) hide show
  1. README.md +20 -13
  2. train.log +2 -0
README.md CHANGED
@@ -1,41 +1,38 @@
1
  ---
2
- language:
3
- - be
4
  license: apache-2.0
5
  tags:
6
- - whisper-event
7
  - generated_from_trainer
8
  datasets:
9
- - mozilla-foundation/common_voice_11_0
10
  metrics:
11
  - wer
12
  model-index:
13
- - name: Whisper Tiny Belarusian
14
  results:
15
  - task:
16
  name: Automatic Speech Recognition
17
  type: automatic-speech-recognition
18
  dataset:
19
- name: mozilla-foundation/common_voice_11_0 be
20
- type: mozilla-foundation/common_voice_11_0
21
  config: be
22
  split: validation
23
  args: be
24
  metrics:
25
  - name: Wer
26
  type: wer
27
- value: 51.28205128205128
28
  ---
29
 
30
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
31
  should probably proofread and complete it, then remove this comment. -->
32
 
33
- # Whisper Tiny Belarusian
34
 
35
- This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the mozilla-foundation/common_voice_11_0 be dataset.
36
  It achieves the following results on the evaluation set:
37
- - Loss: 0.4686
38
- - Wer: 51.2821
39
 
40
  ## Model description
41
 
@@ -61,7 +58,7 @@ The following hyperparameters were used during training:
61
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
  - lr_scheduler_type: linear
63
  - lr_scheduler_warmup_steps: 10
64
- - training_steps: 200
65
  - mixed_precision_training: Native AMP
66
 
67
  ### Training results
@@ -88,6 +85,16 @@ The following hyperparameters were used during training:
88
  | 0.6803 | 0.9 | 180 | 0.4852 | 55.8608 |
89
  | 0.4813 | 0.95 | 190 | 0.4686 | 51.2821 |
90
  | 0.4952 | 1.0 | 200 | 0.4624 | 51.4652 |
 
 
 
 
 
 
 
 
 
 
91
 
92
 
93
  ### Framework versions
 
1
  ---
 
 
2
  license: apache-2.0
3
  tags:
 
4
  - generated_from_trainer
5
  datasets:
6
+ - common_voice_11_0
7
  metrics:
8
  - wer
9
  model-index:
10
+ - name: whisper-tiny-be-test
11
  results:
12
  - task:
13
  name: Automatic Speech Recognition
14
  type: automatic-speech-recognition
15
  dataset:
16
+ name: common_voice_11_0
17
+ type: common_voice_11_0
18
  config: be
19
  split: validation
20
  args: be
21
  metrics:
22
  - name: Wer
23
  type: wer
24
+ value: 46.7032967032967
25
  ---
26
 
27
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
  should probably proofread and complete it, then remove this comment. -->
29
 
30
+ # whisper-tiny-be-test
31
 
32
+ This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the common_voice_11_0 dataset.
33
  It achieves the following results on the evaluation set:
34
+ - Loss: 0.4282
35
+ - Wer: 46.7033
36
 
37
  ## Model description
38
 
 
58
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
59
  - lr_scheduler_type: linear
60
  - lr_scheduler_warmup_steps: 10
61
+ - training_steps: 300
62
  - mixed_precision_training: Native AMP
63
 
64
  ### Training results
 
85
  | 0.6803 | 0.9 | 180 | 0.4852 | 55.8608 |
86
  | 0.4813 | 0.95 | 190 | 0.4686 | 51.2821 |
87
  | 0.4952 | 1.0 | 200 | 0.4624 | 51.4652 |
88
+ | 0.3956 | 0.03 | 210 | 0.4690 | 52.0147 |
89
+ | 0.3719 | 0.07 | 220 | 0.4673 | 52.7473 |
90
+ | 0.3168 | 0.1 | 230 | 0.4499 | 51.4652 |
91
+ | 0.3582 | 0.13 | 240 | 0.4525 | 46.8864 |
92
+ | 0.2475 | 0.17 | 250 | 0.4612 | 52.3810 |
93
+ | 0.2988 | 0.2 | 260 | 0.4346 | 49.8168 |
94
+ | 0.2749 | 0.23 | 270 | 0.4249 | 48.9011 |
95
+ | 0.3368 | 0.27 | 280 | 0.4388 | 46.5201 |
96
+ | 0.2574 | 0.3 | 290 | 0.4309 | 46.7033 |
97
+ | 0.2921 | 0.33 | 300 | 0.4282 | 46.7033 |
98
 
99
 
100
  ### Framework versions
train.log CHANGED
@@ -242,3 +242,5 @@
242
  {'loss': 0.2574, 'learning_rate': 4.482758620689655e-06, 'epoch': 0.3}
243
  {'eval_loss': 0.43085092306137085, 'eval_wer': 46.7032967032967, 'eval_runtime': 18.1023, 'eval_samples_per_second': 3.535, 'eval_steps_per_second': 0.11, 'epoch': 0.3}
244
  {'loss': 0.2921, 'learning_rate': 1.0344827586206898e-06, 'epoch': 0.33}
 
 
 
242
  {'loss': 0.2574, 'learning_rate': 4.482758620689655e-06, 'epoch': 0.3}
243
  {'eval_loss': 0.43085092306137085, 'eval_wer': 46.7032967032967, 'eval_runtime': 18.1023, 'eval_samples_per_second': 3.535, 'eval_steps_per_second': 0.11, 'epoch': 0.3}
244
  {'loss': 0.2921, 'learning_rate': 1.0344827586206898e-06, 'epoch': 0.33}
245
+ {'eval_loss': 0.4282010793685913, 'eval_wer': 46.7032967032967, 'eval_runtime': 18.1178, 'eval_samples_per_second': 3.532, 'eval_steps_per_second': 0.11, 'epoch': 0.33}
246
+ {'train_runtime': 1208.0467, 'train_samples_per_second': 7.947, 'train_steps_per_second': 0.248, 'train_loss': 0.10500287771224975, 'epoch': 0.33}